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Abstract—The digital transformation of industrial production
is driven by the advance of cyber-physical production systems
(CPPS) within which raw materials, machines and operations
are interconnected to form a sophisticated network. Making
such systems self-adaptable is a priority concern for the future
implementation of Industry 4.0 application scenarios. In this
position paper, we design a meta-model and use it as a tool
to describe an end-to-end communication use case from an
ongoing research project. Based on this use case we develop
a business process performance and security trade-off model,
which shows that maximazing both parameters at the same time
is not possible, thus an efficient balance between them has to be
achieved. Motivated by the result, we propose self adaptation as a
solution towards a flexible and secure end-to-end communication
in Industry 4.0. To identify and document the self-adaptation
points in a structured methodological and lightweight way we
use the bespoken meta-model.

I. INTRODUCTION

The fourth industrial revolution, referred to as Industry 4.0,
is often understood as the application of the generic con-
cept of cyber-physical systems (CPS) to industrial production
systems [1]. In cyber-physical production systems (CPPS)
all machines are properly equipped with sensors, actuators
and communication technology and connected to each other
within an Industrial Internet of Things (IIoT). The stream of
data collected and processed from these systems is the new
raw material in such connected industry. Innovations based
on collecting, evaluating, and using this data can improve
existing processes and create new business models. At this
early development phase, there is an urgent need for a clear
description of flexible and secure CPPS. Thus, based on RAMI
4.0 reference model [2], we derive a meta-model that is used as
a tool to support the understanding of such systems, to reduce
the complexity and to provide a consistent terminology.

Despite the benefits, there are still a lot of challenges to
address when dealing with CPPS in Industry 4.0. CPPS have
high security demands, so even if security aspects have been
considered at the design and the implementation phase, the
continuous change of environment conditions and require-
ments of the system itself can affect them later during the
operation. Furthermore, security can not be seen as indipen-
dent from, for example performance, legal or safety aspects of
such system. Improving security without risking to negatively

affect other aspects is a main concern for complex systems
handling a large number of interconnected components.

To identify this research need we consider a use case
from an ongoing research project, addressing the communi-
cation from the edge devices to the backend system via IIoT
gateways. We map the components of this use case in the
corresponding objects of the meta-model to give an overview
how it can be used to describe such systems. Based on this use
case we develop a business process performance and security
trade-off model to identify the need for flexible and secure
end-to-end communication in Industry 4.0. We consider traffic
characteristics, such as offered load, and delivery time, to
evaluate the business process performance of such systems
(e.g., effectiveness) for different security levels of the com-
munication protocol. The trade-off model results have shown
that performance tends to decrease when improving security
of such systems and vice versa.

Therefore, we propose self-adaptation based on autonomic
computing approach [3] as a solution for achieving an efficient
balance between performance and security. Self-adaptable
systems mitigate the risk of negatively affecting one parameter
while improving the other since they have the ability to
change with the environment and requirements, making these
systems flexible. As mentioned by [4], self-adaptation in CPPS
is one of the five areas that have priority for the future
implementation of Industry 4.0 application scenarios.

Our main contributions and initial findings in this position
paper include the following:

• a CPPS meta-model derived based on RAMI 4.0 refer-
ence architecture model, which can be easily adopted and
scaled to the needs of the project

• an end-to-end communication use case described using
the derived meta-model,

• self-adaptation as a solution for improving the trade-off
between business process performance and security, thus
providing a flexible and secure end-to-end communica-
tion in Industry 4.0, and

• using the meta-model to identify and document the self-
adaptation points in a structured methodological and
lightweight way.

The paper is structured following the contributions above.



II. RELATED WORK

To derive the CPPS meta-model presented in this paper,
we have investigated existing architecture models such as
the Industrial Internet Reference Architecture (IIRA) [5], the
Reference Architecture Model for Industry 4.0 (RAMI 4.0) [2],
and communication architectures of distributed automation
systems [6]. However the main foundation of the proposed
meta-model is based on RAMI 4.0 reference model.

A major task that should be addressed in CPPS is to enable
self adaptation, to allow these systems to adjust their behaviour
in response to their perception of the environment and the
requirements of the system itself, that may be unknown at the
design phase. Previous research work have already discussed
possible solutions for self adaptable systems. Tauber et al, [7]
propose a generic autonomic management framework for self-
adaptation based on the autonomic computing approach [3].
Georgas and Tayler [8] provide a knowledge-based approach
to develop systems that are able to autonomously adapt in the
phase of change. They also extend their work by applying
this approach to the development of self-adaptive robotic
systems [9]. Kit et al., [10] present an architecture, which takes
into account self-adaptation by providing a holistic view to
combine the goals of a system, the system’s operational model
and a realistic communication model. This model allows large-
scale simulations of complex CPS, but without considering
self-adaptation in the cloud backend and the sensors alike.

Recent projects have also addressed self - adaptation. The
FEDerAteS (A Foundation for Engineering Decentralized
Self-Adaptive Software Systems) project overall goal is to
study and develop a scientific foundation for engineering
decentralized self-adaptive systems. The main project results
include foundations of self-adaptation, based on which they
have provided evidence that external feedback control loops
(FCL) improve the design of self-adaptive systems [11], an
architecture framework for collective intelligent systems that
include humans in the loop [12], and validation of the results
in different application domains, such as robotic system [13].

The MORISIA (Models@run.time for Engineering Self-
adaptive Software Systems) project provides concepts for engi-
neering self-adaptive software systems, especially the adapta-
tion logic, with runtime models. The project is mainly focused
on runtime models for feedback loops by means of models
that are causally connected to the running system, reflecting
the system’s environment, and specifying the adaptation steps
(monitoring, analysis, planning, and execute) [14].

The SALTY (Self-Adaptive Very Large Distributed
Systems) project has also published results on innovative
self-managing software framework at run-time for VLSDS.
Nzekwa et al., [15] investigate a model-driven approach for
the engineering of FCL whose architecture is based on the
Service Component Architecture (SCA) model and argue that
the use of a data-oriented model for designing self-adaptive
systems significantly increases FCL visibility. Further, they
propose a tool approach that enables engineers to design and
integrate adaptation mechanisms into software systems [16].

However, none of the above mentioned works addresses
explicitly how self-adaptation can be applied to CPPS in an
Industry 4.0 application scenario, and how it can be used to
improve the trade-off between business process performance
and security. Thus, in this paper we develop a trade-off
model as a mean to identify the need for flexible and secure
communication between edge devices and cloud backend in an
Industry 4.0 application scenario and propose self-adaptation
as a solution to it.

III. THE CPPS META-MODEL

Since CPPS are in the initial stage of the development, there
is an urgent need for a clear description of such systems. To
meet such a demand, considering RAMI 4.0, we derive a CPPS
meta-model as shown in figure 1. The CPPS meta-model can
be adopted and scaled to the needs of the project. As different
use cases and viewpoints should be considered and researched,
the chosen meta-model allows incremental enhancements that
can be proven by different research activities. We design the
CPPS meta-model using the ADOxx meta modelling tool
and the UML notation. The following modelling objects are
used for the presentation of the meta-model: (i) modelling
object class, a classifier which describes a set of objects
that share the same features, constraints or semantics, (ii)
relationship dependency, a directed relationship that is used to
show that some UML elements or a set of elements requires,
needs or depends on other model elements for specification
or implementation, and (iii) modelling object aggregation, a
graphical modelling object to visualize levels of the CPPS.

As described in RAMI 4.0 the process axis is vital for
the success of describing and planning the real world of
Industry 4.0. Processes allow a one-to-one description of
the reality and the measurement of, for example, security
aspects in a predictive way. Using the CPPS meta-model,
is possible to model all relevant entities and their relations
to each other on different levels. The CPPS meta-model is
composed of five main levels. The business or governance
level comprises objects like processes, products, IT-services,
requirements as well as contracts/SLA agreements. These
objects are interlinked with the objects of the architecture and
services level with the entities application, application group,
service, application component, interface and data. On the
technology level the objects technology, technology package,
infrastructure component, database and network element can
be found. An additional level for the risk architecture with
the objects risk and safety/security prevention is defined.
The organizational view and its interrelations to the CPPS
is demonstrated within the level of the organization with the
objects role, actor, organizational unit and site. Each of these
objects has a set of attributes that describes the features of
the underlying CPPS. In the context of this research work we
use the CPPS meta-model as a tool to describe an end-to-
end communication use case, explained in section IV-A, and
to identify and document in a structured methodological and
lightweight way the self-adaptation points.



Fig. 1. CPPS meta-model composed of five main levels and the corresponding objects, addressing the RAMI 4.0 axes, used to describe an end-to-end
communication use case for an Industry 4.0 application scenario

IV. APPLYING SELF-ADAPTATION TO INDUSTRY 4.0
- A USE CASE

In this section, we introduce an end-to-end communication
use case for an Industry 4.0 application scenario and discuss
some related security and performance considerations. Based
on these considerations, we develop a trade-off model, consid-
ering traffic characteristics, such as offered load, and delivery
time, to evaluate the effectiveness of such systems for different
security levels of the communication protocol. Additionally,
we propose self-adaptation based on autonomic computing
approach [3] as a solution to improve the trade-off between
performance and security.

A. CPPS end-to-end communication use case

The CPPS are integrated and built on many existing tech-
nologies and components such as industrual production envi-
ronment, including industrial devices equipped with sensors
and actuators, industrial IoT (IIoT) components, and backend
systems, such as cloud platforms.

For our investigation, we consider a use case from an
ongoing research project illustrated in figure 2, which ad-
dresses a flexible and secure end-to-end communication in an
Industry 4.0 application scenario. We describe the use case
in details, including the technologies, to show how the CPPS
components can be mapped in the corresponding objects of the
meta-model. To provide a smart service, such as device man-
agement, data is transmitted between devices, processed and

Fig. 2. CPPS end-to-end communication use case for an Industry 4.0
application scenario

stored throughout the network, and sent to private clouds for
further processing and analysis. The communication protocol
used between the industrial devices, the IIoT components, e.g.,
the IIoT gateways, and the cloud backend system is the MQTT
(Message Queue Telemetry Transport) protocol. MQTT is a
lightweight protocol widely used to accommodate constrained
devices with low power and bandwidth requirements [17].
In the industrial production environment, the new industrial
devices (M2, M3) are already able to communicate using state
of the art protocols, such as MQTT or CoAP. However, this
is not the case if a legacy device (M1) wants to establish a
connection with the IIoT gateway. In this case, a translator
device is needed to translate the device protocol into MQTT.
Relevant research projects have already proposed solutions for
the translation systems, such as Arrowhead protocol translation
system [18].

The industrial devices need to be secured, and particularly



the transmitted data needs to be encrypted as this data often
contains highly confidential data such as industrial recipes. In
principle, the data could be encrypted by simply using avail-
able security APIs. Unfortunately, software-based encryption
is prone to attacks that reveal the used encryption key. To over-
come this issue, we propose to integrate a dedicated hardware,
often referred to as “Secure Element”, in the translator device.
The secure elements provide tamper resistant storages for
holding and protecting the key from any kinds of attacks, even
including physical access to the device. The industrial devices
send the data (e.g., device lifetime data) to an IIoT gateway,
which is build on a Raspberry Pi equipped with macchina.io 1,
which is an open source software toolkit for quickly building
embedded applications that run on Linux-based devices. These
gateways are used to distribute data between various industrial
devices and the cloud storage, however, they might not be
able to store certificates or perform cryptographic calculations.
A potential attacker could easily clone such a gateway and
insert it into the network. The attacker’s device could then
manipulate or steal the data sent between industrial devices
and the cloud. Therefore other solutions have to be applied to
overcome this issue, such as TPMs (Trusted Platform Module)
as they provide integrity protection and a root of trust for
the IIoT gateway. Furthermore, TPMs provide a standardized
interface, which makes it very easy to integrate them in any
gateway. The data are than sent to a backend system, in this
case an OpenStack2 cloud platform. The microservices in the
cloud backend than analyse and process this data to provide
tailor-made individualized services.

The components of this use case are mapped in the CPPS
meta-model to give an idea how such a model can be used
to describe Industry 4.0 application scenarios and to show the
dependences between different levels and objects as shown in
figure 1. For example, in the business/governance level the
product (sales unit with a certain price that can be either
product or service) resulting from the described use case is
the device management service. This service is supported by
the underlying levels, such as architecture and technology
level, where the components of the CPPS are mapped to
the corresponding objects of the meta-model. For example,
one application supporting device management service is the
IIoT gateway, which has the MQTT protocol as an application
component. The application component is interconnected with
the data object, in this case sensor data. The data object
uses a database object, in this case a gateway database, from
the technology level, which uses SQL as technology, and
Raspberry Pi as infrastructure component.

B. Security and performance considerations
In this subsection we discuss performance and security

considerations related to the MQTT protocol, as an asset of
the considered end-to-end communication use case.

MQTT over TCP: The MQTT protocol by default relies on
TCP (Transmission Control Protocol) as transport protocol, so

1https://macchina.io/
2https://www.openstack.org/

the connection does not use encrypted communication. In this
case security remains a serious concern.

MQTT over TLS session start-up: For a secure end-to-
end communication, the MQTT should be used over TLS
(Transport Layer Security) protocol instead of plain TCP. TLS
is a protocol used to establish an authenticated communication
channel and can also accomodate other application layer pro-
tocols if needed. However, this security improvement comes at
a cost in terms of the communication overhead. The overhead
of a TLS connection can be divided up into: (i) the session
start-up overhead (OHTLS−ss), required for establishing the
TLS handshake, and (ii) the per-packet overhead (OHTLS−pp),
computational overhead of cryptographic functions. The TLS
handshake is initiated by the MQTT client to start a secure
communication session by using asymmetric algorithms, such
as RSA, for server identification. The TLS handshake typically
adds 4-7 kilobytes of communication overhead, whilst the
per-packet overhead depends on the ciphersuite used. In this
model, we have considered AES-256-CBC-SHA. AES is a
symmetric key encryption technique that has a fixed block
size of 128 bits and uses different key lengths, 128, 192, and
256 bit, and is used for encrypting application layer specific
messages. Although encryption guarantees privacy, to ensure
message integrity TLS uses also message digits generations
and verification algorithms such as MD5, SHA, etc. For a
high level of security, SHA is recommended compared to
MD5. Thus, the per-packet overhead of the chosen ciphersuite
is approximately 40 bytes, as the packet is protected by a
TLS header (5 bytes) and a TLS trailer, which includes the
encryption algorithm padding (0-15 bytes) and the MAC tag
that comes from the SHA authentication algorithm (20 bytes).

MQTT over TLS session resume: The MQTT client needs
to establish a connection once per session, thus the TLS
session once established can be resumed. Once connected to
the MQTT broker, the client can send and receive packets
without any additional handshake overhead, reducing it to
the session resume overhead (OHTLS−sr), approximately 330
bytes. The per-packet overhead remains the same.

MQTT over TLS protected by TPM: However as discussed
above, the security of the MQTT over TLS can be further
improved by integrating a TPM in the IIoT gateway that acts
as a trust-boundary for secure data exchange, but adds an
additional overhead (OHTPM ).

C. The trade-off model

Based on the security and performance considerations, we
can argue that by using MQTT over TLS protected by TPM
the level of security in CPPS end-to-end communication can be
significantly improved, whereas the level of business process
performance depends on whether TLS session resume is used
or not. The TLS session resume offers a better performance
compared with TLS session start up but has a major limitation,
the servers are responsible for remembering negotiated TLS
sessions only for a given period of time, known as session
interval. To visualize the effect of session interval in effec-
tiveness and security level, we develop a simplified trade-off



model. In the TLS protocol standard [19], an upper limit of
24 hours is suggested for session interval, since an attacker
who obtains a master secret may be able to impersonate the
compromised party until the corresponding session interval is
retired. Thus, we evaluate the effectiveness and security level
for different number of sessions (s) within a given period of
time, meaning that the bigger the number of sessions (s) the
shorter the session interval. First, we define the delivery time
of N packets when using MQTT over TCP (d−tTCP ), as the
ratio between the packet size (p−s) and the offered load. In
the same way we define the delivery time of N packets when
using MQTT over TLS protected by TPM (d−tTLS+TPM ) for
different number of sessions (s), where N ≥ s, which depends
on the packet size (p−s) increased by the additional overhead
coming as a result of security mechanisms and offered load.
In this case n is the number of packets delivered per TLS
session start-up.

d−tTCP =
N ∗ p−s

offered−load
(1)

d−tTLS+TPM (s) =
n ∗ (p−s +

∑
OH1) + (N − n) ∗ (p−s +

∑
OH2)

offered−load
(2)

where, ∑
OH1 = OHTLS−ss + OHTLS−pp + OHTPM (3)∑

OH2 = OHTLS−sr + OHTLS−pp (4)

In terms of business process performance, we define ef-
fectiveness as the ratio between the expected delivery time,
delivery time when using MQTT over TCP, and the achieved
delivery time for different number of TLS sessions within a
given period of time.

effectiveness(s) =
d−tTCP

d−tTLS+TPM (s)
∗ 100% (5)

In terms of security, the shorter the session interval, the
lesser the time that an attacker gets to guess the session
ID [19]. To visualize this we define the security level as reverse
of the effectiveness level.

security(i + 1) = effectiveness(s − i) (6)

for i=0,1,2,...,s-1

For the trade-off model analysis we consider the following
as a representative example: (i) number of delivered packets
N = 50, (ii) packet size p−s = 500bytes, (iii) offered load
offered−load = 0.1; 0.5; 1; 5; 10Mbps, and (iv) number of
sessions s = 1, 2, ..., smax; smax = 50.

Figure 3 shows the effectiveness and security level using
different number of TLS sessions in a given period of time,
thus different TLS session intervals. When using MQTT over
TLS protected by TPM with a statically configured session in-
terval the following unsatisfactory situations can be identified
depending on the system requirements: (i) a low effectiveness
level for short session intervals because the TLS handshake
will be repeated for each session start up, and (ii) a low
security level for long session intervals because the attacker
will get more time to guess the session ID.

Thus, we propose self-adaptation as a solution to improve
the trade-off between effectiveness and security. The inte-
gration of autonomic managers in the corresponding CPPS
components makes possible to adapt the session interval based
on the system requirements.

Fig. 3. Effectiveness and security level for different number of TLS sessions
in a given period of time

V. SELF-ADAPTATION

From the trade-off model result we can argue that maxi-
mizing the security and business process performance at the
same time is not possible and an efficient balance between
these two parameters has to be achieved. Thus, we propose
self-adaptation as a solution to improve the trade-off between
business process performance and security. As illustarted in
figure 4, a self-adaptable system consists of two parts: the
target system, which supports functions that are specific to
the domain, and the autonomic manager. A well-known ap-
proach to develop an autonomic manager is through feedback
loops [3], consisting of four phases: (i) monitor phase, during
which target system specific events are generated, (ii) analyze
phase, during which metrics are extracted from the generated
events in order to represent the current situation of the target
system, (iii) plan phase, during which policies driven by the
metrics are defined, and (iv) execute phase, during which
the planned actions are carried out. These four phases are
supported by a knowledge base that provides a level of
abstraction of the activity, target system, environment, and
requirements. To allow the interaction between the target
system and the autonomic manager two additional components
are included, the sensors and the effectors. Sensors are used to
gather information from the target system, in order to support
the tasks performed by the autonomic manager. Likewise,
the effectors are used to execute the action decided by the
autonomic manager to the target system. In our previous
work [7], we have proposed GAMF (Generic Autonomic
Management Framework) as a solution that allows program-
mers to develop an autonomic manager for any target system
without having to (re)implement generic control mechanisms.
We intend to extend our previous work to develop autonomic
managers for CPPS components and to investigate how to
make them interact with each other. To identify and document
in a structured methodological and lightweight way the self-



adaptation points we use the CPPS meta-model, as illustrated
in figure 4, where self-adaptation approach is a model of the
security object in the risk architecture level of the meta-model.

Fig. 4. Self-adaptation components documented in the CPPS meta-model

Considering our use case, in order to provide self adaptation
for business process performance and security concerns, first
it is necessary to monitor the target system. Thus, sensors are
used to collect data in the IIoT gateway regarding delivery
time and session interval. The sensors must have access to
read this data from the MQTT protocol. Another target system
which is of interest to be considered for monitoring in such a
scenario is the translator system. It is a crucial point of the use
case, since it makes possible the communication of different
components that use different messaging protocols. Second, it
is important to analyze the target system behaviour based on
the shared knowledge. For example, it is important to analyze
the effectiveness and security level, defined as Measurable
Indicator Points (MIP) in the model. Third, a plan needs to
be defined using self-adaptation policies (SAP) to mitigate
the detected issues. A possible SAP is to adapt the session
interval, for example by extending the session interval when
high performance is required, or by shortening the session
interval when high security is required. These actions (A) are
executed by the effectors to the target system.

VI. CONCLUSION

In this position paper we have derived a CPPS meta-model
from RAMI 4.0 and we have used it as a tool to describe
an end-to-end communication use case. We have developed
a business process performance and security trade-off model,
which shows that by adapting system parameters, such as the
TLS session interval of the communication protocol, the trade-
off between effectiveness and security can be improved. Thus,
we have proposed to use self-adaptation based on autonomic
management approach to allow such system to adapt their
behaviour in response to changes of the environment and the
system requirements, providing a flexible and secure end-to-
end communication. Defining and categorizing events, metrics,
adaptation policies and effectors relevant for self-adaptable
CPPS in the Industry 4.0 domain will be one of the main
tasks in our future work.
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