

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved.

Application Note

 http://zs.utia.cas.cz

Compact Zynq System with SW-defined
Floating-Point 8xSIMD EdkDSP Accelerator

Trenz Electronics TE0720-2IF Module and TE0706-02 Carrier Board

Jiří Kadlec, Zdeněk Pohl, Lukáš Kohout

kadlec@utia.cas.cz , xpohl@utia.cas.cz , kohoutl@utia.cas.cz
phone: +420 2 6605 2216

UTIA AV CR, v.v.i.

Revision history:

Rev. Date Author Description

1 13.01.2018 Jiří Kadlec Initial internal draft for the Productive 4.0
consortium meeting 17-18.1.2018 (Lisabon, PT)

Acknowledgements:

This work has been partially supported by ECSEL JU project Productive4.0 No. 737459.

mailto:kadlec@utia.cas.cz
mailto:xpohl@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

2/55

http://zs.utia.cas.cz

Table of Contents

Compact Zynq System with SW-defined Floating-Point 8xSIMD EdkDSP Accelerator Trenz Electronics TE0720-2IF Module
and TE0706-02 Carrier Board .. 1

1. EdkDSP IP Core - Introduction ... 4

2. Implementation Details .. 5

3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions ...11

4. EdkDSP IP Core – MicroBlaze C Application Interface Functions ...12

5. EdkDSP IP Core – Integration with dual core ARM A9 Linux ...17

6. Setup of Hardware ...18

7. Reference Application for the 8xSIMD EdkDSP IP Core...20

8. Installation and Use of Base Evaluation Package ..22

9. Installation and Use of Extended Evaluation Package ..35

10. References ...51

11. Base Evaluation Package ..52

12. Extended Evaluation Package for PRODUCTIVE 4.0 partners ..53

Disclaimer ..55

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

3/55

http://zs.utia.cas.cz

 Table of Figures

Figure 1: TE0706-02 carrier board with TE0720-2IF Zynq module... 4
Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator. 5
Figure 3: 8xSIMD EdkDSP floating point accelerator IP core. .. 8
Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core. 9
Figure 5: MicroUSB cable: Pmod USBUART. MiniUSB cable: XMOD FTDI JTAG adapter.................. 18
Figure 6: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output. 25
Figure 7: Release demo t01_s. Vivado Lab Tool is open. .. 26
Figure 8: Release demo t01_s. Probes file is specified. Trigger conditions are set. 27
Figure 9: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation. 28
Figure 10: Release demo t01_s. Details of the 8xSIMD EdkDSP FIR filter computation. 29
Figure 11: Release demo t01_s. Stanalone demo supports measurements of the chip temperature. .. 30
Figure 12: Release demo t01_l. Linux start. ... 33
Figure 13: Release demo t01_l. Login, Compilation of firmware in the EdkDSP C Compiler. 33
Figure 14: Release demo t01_l. Program and start 8xSIMD EdkDSP demo. 34
Figure 15: Create new SDK 2017.1 workspace. .. 36
Figure 16: Import the extended evaluation package projects into the SDK Workspace. 37
Figure 17: SDK compiles MicroBlaze SW projects for the standalone debug target. 38
Figure 18: Debug demo t01_l. Execution of the ./t01_s.elf example from the SD card. 39
Figure 19: Debug demo t01_s. Open project edkdsp_fp12_1x8_s for debug. 39
Figure 20: Debug demo t01_s. Start the free-run from the debugger. .. 40
Figure 21: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo. 40
Figure 22: Debug demo t01_s. MicroBlaze project output (Compiled for Debug). 41
Figure 23: Compiled EdkDSP firmware. Started debug demo - linux target t01_l. 43
Figure 24: Select MicroBlaze project edkdsp_fp12_1x8_l for debug. ... 45
Figure 25: Select free run of MicroBlaze project edkdsp_fp12_1x8_l. .. 46
Figure 26: Output from ARM MicroBlaze fort t01_l. Compiled EdkDSP firmware. 47
Figure 27: Create BOOT.bin for the t01_s demo. ... 48
Figure 28: Create BOOT.bin for the t01_l demo. .. 49

Table of Tables

Table 1: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations. 6
Table 2: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit. 10
Table 3: PicoBlaze6 precompiled support functions ... 11
Table 4: MicroBlaze access names to 8xSIMD EdkDSP memory banks .. 12
Table 5: MicroBlaze WAL error codes ... 12
Table 6: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core 12
Table 7: Organisation of DDR3 memory .. 17
Table 8: Requirements and results. ... 21
Table 9: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP 22

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

4/55

http://zs.utia.cas.cz

1. EdkDSP IP Core - Introduction

This report describes design of compact HW system based on Zynq all programmable 28nm chip with two Arm
A9 processors and programmable logic area. System is optimised for Ethernet connected computing nodes
serving for industrial automation, local data processing and data communication. The documented HW
architecture is one of candidates for wider use within the ECSEL Productive 4.0 project for the edge computing
node in the Industry 4.0 solutions.

The demonstrated Zynq system includes the run-time reprogrammable 8xSIMD EdkDSP IP core. It combines the
MicroBlaze and the floating point single Instruction multiple data (SIMD) data flow unit (DFU). The SIMD DFU is
controlled by a run-time reprogrammable finite state machine implemented by Xilinx PicoBlaze6 8 bit controller
with dedicated embedded (on Zynq executed) C compiler.

The application note describes the installation of the HW system, the SW API, algorithmic implementation and
mapping to the 8xSIMD EdkDSP IP. Presented HW system is also compatible with the Xilinx SDSoC 2017.1 design
environment. The SDSoC is supporting automated compilation of user-defined C/C++ ARM functions into HW
accelerators with data movers (zero-copy, DMA, SG-DMA) and the automated integration of generated
accelerators with the ARM Linux or stand-alone operating systems.

Figure 1: TE0706-02 carrier board with TE0720-2IF Zynq module

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

5/55

http://zs.utia.cas.cz

2. Implementation Details

Figure 2: SDSoC compatible Zynq system with 8xSIMD EdkDSP floating point accelerator.

Evaluation system
The 8xSIMD EdkDSP IP Core is programmed, evaluated and debugged in HW Xilinx Zynq module TE0720-IF [1].
The 28nm Xilinx Zynq device xc7z020-2I has two 32 bit ARM Cortex A9 processors operating at 766 MHz and
single MicroBlaze 32 bit soft core processor operating at 100 MHz. The Zynq programmable logic area is used for
one 8xSIMD EdkDSP IP (operating at 120 MHz) and also for demonstration of compatibility of the EdkDSP IP with
examples of Xilinx SDSoC 2017.1 HW accelerators.

The EdkDSP IP Core is 8xSIMD floating point accelerator. It is reprogrammable in runtime by change of firmware
of a PicoBlaze6 8bit controller. The PicoBlaze6 controller schedules vector operations performed in the 8xSIMD
floating point data paths. The PicoBlaze6 controller serves as re-programmable finite state machine (FSM). It is
programmed by firmware compiled by an EdkDSP C Compiler and Assembler. The EdkDSP C Compiler and
Assembler are implemented as application programs running on the embedded PetaLinux 2017.1 operating
system. The 8xSIMD EdkDSP IP is controlled by the 32bit MicroBlaze processor. MicroBlaze runs programs from
the DDR3 memory. The DDR3 is interfaced by an Instruction and Data cache (32k x 32bit) with HP0 AXI interface.
The 8xSIMD EdkDSP IP is connected to the MicroBlaze by local dual-ported memories. MicroBlaze implements
data communication from DDR3 to 8xSIMD EdkDSP dual-ported memories in software. This communication is
performed in parallel with the 8xSIMD parallel floating point computation in the 8xSIMD EdkDSP IP.

Parameters of the 8xSIMD EdkDSP IP core
8x SIMD EdkDSP floating point accelerator IP core supports 8xSIMD vector floating point operations performed
from/to dual-ported BRAMs A, B , Z. Each dual-ported BRAM has 8 parallel layers of 1024 32bit words. The set of
supported floating point operations is different for different grades [10|20|30|40] of the 8xSIMD EdkDSP
accelerator IPs. The supported floating point operations are summarised in Table 1.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

6/55

http://zs.utia.cas.cz

The accelerator bce_fp12_1x8_0_axiw_v1_10 is area optimized and supports only data transfers and vector
floating point operations FPADD, FPSUB in 8 SIMD data paths.

The accelerator bce_fp12_1x8_0_axiw_v1_20 performs identical operations as bce_fp12_1x8_0_axiw_v1_10
plus the vector floating point MAC operations in 8 SIMD data paths. MAC is supported for length of vectors 1 up
to 10. This accelerator is optimized for applications like floating point matrix multiplication with one row and
column dimensions <= 10.

The accelerator bce_fp12_1x8_0_axiw_v1_30 supports identical operations as bce_fp12_1x8_0_axiw_v1_20
plus HW-accelerated computation of the floating point vector-by-vector dot-product operators performed in 8
SIMD data paths. It is optimized for parallel computation of up to 8 FIR or LMS filters, each with size up to 250
coefficients. It is also efficient in case of floating point matrix by matrix multiplications, where one of the
dimensions is large (in the range from 11 to 250).

The accelerator bce_fp12_1x8_0_axiw_v1_40 supports identical operations as bce_fp12_1x8_0_axiw_v1_30
plus an additional HW support of dot product. It is computed in 8 data paths with HW-supported wind-up into
single scalar result propagated into all SIMD planes.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators support single data path for pipelined, floating-point
division operations with vector operands taken from the first SIMD plain and the result is propagated into all 8
SIMD plains.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators are suitable for applications like adaptive normalised
LMS and NLMS filters and square root free versions of adaptive RLS QR filters and adaptive RLS LATTICE filters.

Table 1: (8xSIMD) EdkDSP bce_fp12_1x8_40 accelerator vector operations.

Name in MicroBlaze C value (dec) 8xSIMD Floating point Operation

WAL_BCE_JK_VVER = 0 Return capabilities of the (8xSIMD) EdkDSP accelerator

WAL_BCE_JK_VZ2A = 1 8xSIMD copy am[i] <= zm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VB2A = 2 8xSIMD copy am[i] <= bm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VZ2B = 3 8xSIMD copy bm[i] <= zm[j]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VA2B = 4 8xSIMD copy bm[i] <= am[j]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VADD = 5 8xSIMD add zm[i] <= am[j] + bm[k]]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VADD_BZ2A = 6 8xSIMD add am[i] <= bm[j] + zm[k]]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VADD_AZ2B = 7 8xSIMD add bm[i] <= am[j] + zm[k]]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VSUB = 8 8xSIMD sub zm[i] <= am[j] - bm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VSUB_BZ2A = 9 8xSIMD sub am[i] <= bm[j] - zm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VSUB_AZ2B = 10 8xSIMD sub bm[i] <= am[j] - zm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VMULT = 11 8xSIMD mult zm[i] <= am[j] * bm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VMULT_BZ2A = 12 8xSIMD mult am[i] <= bm[j] * zm[k]; m=1..8 IP core: 10,20,30,40
WAL_BCE_JK_VMULT_AZ2B = 13 8xSIMD mult bm[i] <= am[j] * zm[k]; m=1..8 IP core: 10,20,30,40

WAL_BCE_JK_VPROD = 14 8xSIMD vector products: IP core: 30,40
 zm[i] <= am'[j..j+nn]*bm[k..k+nn]; m=1..8; nn range 1..255

WAL_BCE_JK_VMAC = 15 8xSIMD vector MACs: IP core: 20,30,40

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

7/55

http://zs.utia.cas.cz

 zm[i..i+nn] <= zm[i..i+nn] + am[j..j+nn] * bm[k..jk+nn];
 nn range 1..13

WAL_BCE_JK_VMSUBAC = 16 8xSIMD vector MSUBACs IP core: 20,30,40
zm[i..i+nn] <= zm[i..i+nn] - am[j..j+nn] * bm[k..jk+nn];
 nn range 1..13

WAL_BCE_JK_VPROD_S8 = 17

8xSIMD vector product (extended) IP core: 40
 zm[i] <= ((a1'[j..j+nn]*b1[k..k+nn]+a2'[j..j+nn]*b2[k..k+nn])
 + (a3'[j..j+nn]*b3[k..k+nn]+a4'[j..j+nn]*b4[k..k+nn]))
 +
 ((a5'[j..j+nn]*b5[k..k+nn]+a6'[j..j+nn]*b6[k..k+nn])
 + (a7'[j..j+nn]*b7[k..k+nn]+a8'[j..j+nn]*b8[k..k+nn]));
 m=1..8; nn range 1..255

WAL_BCE_JK_VDIV = 20 vector division (extended) IP core: 10,20,30,40
zm[i] <= a1[j] / b1[k]; m=1..8

Ports of the 8xSIMD EdkDSP accelerator

 bce_atoa[0:9] Memory A address (addressing 1024 32 bit floating point values)

 bce_atob[0:9] Memory B address (addressing 1024 32 bit floating point values)

 bce_atoz[0:9] Memory Z address (addressing 1024 32 bit floating point values)

 bce_done[0:7] Vector operation in progress or finished

 bce_led4b[0:3] 4 bit output, intended for led signalling. (Unconnected in the evaluation design).

 bce_mode[0:3] Mode of the communication protocol PicoBlaze6 - MicroBlaze

 bce_op[0:7] Vector operation to be performed.

 bce_port[0:7] 8 bit output port. (Unconnected in the evaluation design).

 bce_port_id[0:7] 8 bit output External port address.
Address space [0x0 ... 0x1F] is reserved for optimized construction of the VLIW
instruction to the 8xSIMD vector processing unit of the EdkDSP.
Address space [0x20 ... 0xFF] can be used by the user.

 bce_port_wr 1 bit output. Write strobe for write of 8 bit data to the external port address.

 bce_r_pb 1 bit output. Reset of the PicoBlaze6.

 bce_we 1 bit output. Write strobe signals start of execution of a VLIW instruction by the
 8xSIMD vector processing unit of the EdkDSP.

 bce_dip4b[0:3] 4bit input (Connected to a constant in the evaluation design).

 Bce_gpi8b[0:7] 8bit input (Connected to a constant in the evaluation design).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

8/55

http://zs.utia.cas.cz

Figure 3: 8xSIMD EdkDSP floating point accelerator IP core.

Interface of the 8xSIMD EdkDSP IP to the MicroBlaze processor
The EdkDSP IP core is connected to the 100 MHz MicroBlaze processor via the 100 MHz 32bit AXI lite bus
represented by port s_axi , 100 MHz clock input axi_aclk and an asynchronous reset signal axi_aresetn. See
Figure 3.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

9/55

http://zs.utia.cas.cz

The debug ports are used for the real-time visualisation, debug and analysis of the computation implemented
inside of the 8xSIMD data flow unit (DFU) of the (8xSIMD) EdkDSP accelerator IP. This makes easier to debug the
compiled PicoBlaze6 firmware code. The implemented in circuit logic analyser (ILA) debug probes can capture
8096 data samples and provide visibility for the auto-generated addresses and for the detailed schedule of
vector operation in the 8xSIMD EdkDSP IP core. See Figure 3.

Figure 4 presents connection of the two parts of the 8xSIMD EdkDSP IP core.

Figure 4: Internal details of (8xSIMD) EdkDSP floating point accelerator IP core.

All bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators versions have identical Edk IP part.

The DSP part has identical ports and connectivity (see

Figure 4) for all bce_fp12_1x8_0_axiw_v1_[10|20|30|40] accelerators versions.

The Edk part of the EdkDSP floating point accelerator IP core bce_fp12_1x8_0_axiw_v1_0_c includes inside the
PicoBlaze6 controller, its program memories P0 and P1 and the 8xSIMD dual-ported block-ram memories 8xA,
8xB and 8xZ designed for parallel access. The bce_fp12_1x8_0_axiw_v1_0_c IP is designed in the Xilinx System
Generator 14.5 and ported to the Vivado 2017.1 compatible IP core. The PicoBlaze6 firmware executes C code
and supports C constructs like loops, while, if, else, function calls etc.

The first of the two ports of all block-rams are accessed by the MicroBlaze as memory via the Axi-lite bus.

 The second of the two ports of both program memories P0 and P1 are connected to the PicoBlaze6
controller.

 The second of the two ports of all data memories 8xA, 8xB and 8xZ are connected to the floating point
data paths of the data flow unit (DFU) unit and support parallel access.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

10/55

http://zs.utia.cas.cz

The DFU bce_fp12_1x8_0_dsp is designed in the Xilinx System Generator for DSP 2017.1. It contains 8 pipelined
floating point ADD units, 8 pipelined floating point MULT units and one pipelined floating point DIV unit. The
DFU supports all vector operations defined in Table 1.

 The 100bit VLIW instruction is transferred in two 50bit ports mem_bce_i_lo and mem_bce_i_hi. The

VLIW instruction is set by dedicated PicoBlaze6 output ports. See Table 2 .

 The 8xSIMD data flow unit executes 8xSIMD floating point operations defined in Table 1.

 The concrete 8xSIMD operation is defined by the PicoBlaze6 DFU_OP 8bit output register driving the
mem_bce_op port of the bce_fp12_1x8_0_axiw_v1_0_c IP. The transfer of the complete VLIW
instruction (100+8 bits) is triggered by the write strobe signal mem_bce_we . It is activated by
PicoBlaze6 program write of the 8xSIMD operation DFU_OP. See Table 2 .

The 8xSIMD data flow unit (DFU) indicates end of the operation in the 8bit output port mem_bce_done.
PicoBlaze6 program can execute few instructions in parallel to the 8xSIMD operation defined in DFU_OP. End of
the 8xSIMD operation is detected by the PicoBlaze6 program by reading of the input 8bit port mem_bce_done.
PicoBlaze6 firmware defines the sequence of VLIW instructions for the 8xSIMD DFU unit by its dedicated output
registers. PicoBlaze6 addresses of these dedicated output registers are listed in Table 2 .

Table 2: PicoBlaze6 ports forming VLIW instruction for the 8xSIMD EdkDSP data flow unit.

PicoBlaze6 registers used for definition of
the 100 bit wide VLIW instruction for the
EdkDSP Data Flow Unit

Format
[msb..lsb]

VLIW
[2x 50bit]
mem_bce_i_hi
mem_bce_i_lo

Description of sections defined in the
VLIW instruction for the EdkDSP Data
Flow Unit

[00b, DFU_CNT] [2bit,8bit] 10 bit [49..40] Number of 8xSIMD steps (0 .. 255)

[00b, DFU_Z_INC] [2bit,8bit] 10 bit [39..30] Auto increment of Z address (0 .. 255)

[DFU_Z_MEM_BANK, DFU_Z_MEM_SADDR] [2bit,8bit] 10 bit [29..20] Set Z address after auto incr overflow

[DFU_Z_MEM_BANK, DFU_Z_MEM_ADDR] [2bit,8bit] 10 bit [19..10] Initial Z address

[00b, DFU_B_INC] [2bit,8bit] 10 bit [09..00] Auto increment of B address (0 .. 255)

[DFU_B_MEM_BANK, DFU_B_MEM_SADDR] [2bit,8bit] 10 bit [49..40] Set B address after auto incr overflow

[DFU_B_MEM_BANK, DFU_B_MEM_ADDR] [2bit,8bit] 10 bit [39..20] Initial B address

[00b, DFU_A_INC] [2bit,8bit] 10 bit [29..20] Auto increment of A address (0 .. 255)

[DFU_A_MEM_BANK, DFU_A_MEM_SADDR] [2bit,8bit] 10 bit [19..10] Set A address after auto incr overflow

[DFU_A_MEM_BANK, DFU_A_MEM_ADDR] [2bit,8bit] 10 bit [09..00] Initial A address

[0000b, PBP_REG01] [4bit,4bit] 8 bit Set actual VLIW instr. memory (0 .. 15)

[DFU_OP] [8bit] 8 bit Execute SIMD operation with
parameters in the actual VLIW instr.
memory (set by the PBP_REG01 port).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

11/55

http://zs.utia.cas.cz

3. EdkDSP IP Core – PicoBlaze6 C Application Interface Functions

The EdkDSP compiler embedded compilation of simple C and ASM programs or the PicoBlaze6 controller.
PicoBlaze6 programs can use predefined and precompiled library functions listed in Table 3. Functions are
optimized in the PicoBlaze6 assembler code, and occupy fixed area of the firmware and serve as common simple
API for C and ASM PicoBlaze6 programs.

PicoBlaze6 firmware image with precompiled support functions is present in MicroBlaze header file
fill_def_program_store.h PicoBlaze6 application program firmware is merged with this precompiled image by
the MicroBlaze SW program.

Table 3: PicoBlaze6 precompiled support functions

PicoBlaze6 predefined functions Description

unsigned char mb2pb_read_data(); Single unsigned char from MicroBlaze to PicoBlaze6

void pb2mb_write(unsigned char data); Single unsigned char from PicoBlaze6 to MicroBlaze

void pb2mb_eoc(unsigned char data); EOC unsigned char from PicoBlaze6 to MicroBlaze

void pb2mb_req_reset(unsigned char data); Request from PicoBlaze6 to MicroBlaze to initiate PB reset

void pb2mb_reset(); Information from PicoBlaze6 to MicroBlaze - PB reset

void pb2dfu_set(unsigned char mem,
unsigned char data);

Set one section of the VLIW instruction for the data flow unit
(DFU) to an unsigned char data. VLIW instruction sections are
addressed as PicoBlaze6 8bit output ports defined in Table 2

void pb2dfu_wait4hw(); PicoBlaze6 function is waiting for the termination of data flow
unit operation.

unsigned char led2pb(); Write from PicoBlaze6 to 4 bit led output port

unsigned char btn2pb(); Read from 4 bit input port to PicoBlaze6

unsigned char hex_h(unsigned char ch); Translate upper 4 bit nibble of an unsigned char to ascii

unsigned char hex_l(unsigned char ch); Translate lower 4 bit nibble of an unsigned char to ascii

void pb2lcd_ascii_char(unsigned char ch,
unsigned char pos);

Write from PicoBlaze6 to LCD asci alphanumerical display

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

12/55

http://zs.utia.cas.cz

4. EdkDSP IP Core – MicroBlaze C Application Interface Functions

MicroBlaze program is responsible for data communication, programming and initialization of the PicoBlaze6
and global scheduling of the implemented algorithm. The API providing MicroBlaze - Picoblaze6 interface is
called Worker Abstraction Layer (WAL).

 8xSIMD EdkDSP memory pointers and program memory pointers (from MicroBlaze view) are defined in
Table 4.

 WAL error codes are defined in Table 5.

 8xSIMD EdkDSP is supported by API functions collected in the WAL API are listed and described in Table

6.

Table 4: MicroBlaze access names to 8xSIMD EdkDSP memory banks

MicroBlaze access names Description of the 8xSIMD EdkDSP memory banks

WAL_BCE_JK_DMEM_A index of the A data memory banks (8x [0..1023] 32bit words)

WAL_BCE_JK_DMEM_B index of the B data memory banks (8x [0..1023] 32bit words)

WAL_BCE_JK_DMEM_Z index of the Z data memory banks (8x [0..1023] 32bit words)

WAL_CMEM_MB2PB index to MB2PB control memory (the control register of the worker)

WAL_CMEM_PB2MB index to PB2MB control memory (the status register of the worker)

WAL_PBID_P0 index to P0 control memory (PicoBlaze program memory 1)

WAL_PBID_P1 index to P1 control memory (PicoBlaze program memory 2)

Table 5: MicroBlaze WAL error codes

MicroBlaze WAL codes Value Description
WAL_RES_OK 0 all is OK

WAL_RES_WNULL 1 argument is a NULL

WAL_RES_ERR -1 generic error

WAL_RES_ENOINIT -2 not initiated

WAL_RES_ENULL -3 null pointer

WAL_RES_ERUNNING -4 worker is running

WAL_RES_ERANGE -5 index/value is out of range

Table 6: MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

MicroBlaze API functions for communication with 8xSIMD EdkDSP IP core

wal_init_worker() - generalised function for worker initialising

*wrk is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the *wrk structure is prepared
to initiate worker (the family description structure must be set). Then the assigned family function (init_wrk())
is called. In the called function all arrays of pointers to shared memories should be initiated.

Return Value: The function returns return code WAL_RES_OK if successful and WAL_RES_E... if any error occurs.

int wal_init_worker(struct wal_worker *wrk);

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

13/55

http://zs.utia.cas.cz

wal_done_worker - generalised function for worker clean-up

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls done function (done_wrk())
assigned to family description structure. In the called function all dynamically allocated worker structures,
memories and resources should be clean-up and released if they have been created in the worker init function.

Return Value: The function returns WAL_RES_... codes.

int wal_done_worker(struct wal_worker *wrk);

wal_reset_worker() - generalised function for worker hard reset

*wrk is a pointer to the worker structure

This function is designed for calling from user application. The function calls reset function (reset_wrk())
assigned to the family description structure. In the called function the worker control registers should be reset
(by HARD RESET bit in the worker control register). The reset is not acknowledged by accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_reset_worker(struct wal_worker *wrk);

wal_start_operation() - generalised function for starting operation on the accelerator.

*wrk is a pointer to the worker structure. *pbid is an index of used PB firmware (WAL_PBID_...)

This function is designed for calling from user application. The function checks if the accelerator is in the idle
state and then it calls function for starting operation (start_op()) assigned to the family description structure.
The called function should start a new accelerator operation by setting accelerator control register and
checking status register. This function is blocking, i.e. it waits for acknowledgement from accelerator.

Return Value: The function returns WAL_RES_... codes.

int wal_start_operation(struct wal_worker *wrk, unsigned int pbid);

wal_end_operation() - generalised function for finishing operation on the accelerator.

*wrk is a pointer to the worker structure.

This function is designed for calling from user application. The function checks if the accelerator is in processing
state and then it calls function for ending operation (end_op()) assigned to the family description structure. The
called function should stop processing operation on the accelerator. And it waits for synchronization with the
accelerator, therefore the function is blocking.

Return Value: The function returns WAL_RES_... codes.

int wal_end_operation(struct wal_worker *wrk);

wal_mb2pb() - generalised function for setting worker control register.

*wrk is a pointer to the worker structure. data is user data to be send to worker control register.

This function is designed for calling from user application. The function calls function for setting worker control

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

14/55

http://zs.utia.cas.cz

register (mb2pb()) assigned to the family description structure. The called function should send user data
through control register with controlling READ bit. It should also waits for synchronization with accelerator.

Return Value: The function returns WAL_RES_… codes.

int wal_mb2pb(struct wal_worker *wrk, const uint32_t data);

wal_pb2mb() - generalised function for reading worker status register.

*wrk is a pointer to the worker structure. *data is a pointer to an output buffer where read user data is
written.

This function is designed for calling from user application. The function calls function for reading worker status
register (pb2mb()) assigned to the family description structure. The called function should read user data
through worker status register with waiting for synchronization with accelerator.

Return Value: The function returns WAL_RES_… codes.

int wal_pb2mb(struct wal_worker *wrk, uint32_t *data);

wal_mb2cmem() - generalised function for writing a block of data to any worker control or support

memory

*wrk is a pointer to the worker structure. memid is an index of control/support memory where data are
written to (WAL_CMEM_... or WAL_..._SMEM_...). memoffs is offset in selected memory (in words not in
bytes). outbuf is a pointer to memory where data are read from. len is a number of words to copy from outbuf
to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for writing data to any control/support memory (mb2cmem()) assigned to the
family description structure. The called function should get a pointer to the right memory according to the
required index memid. For accessing support memories they have to define indices greater then indices to
control memories. Then the called function should copy a block of data from CPU memory outbuf to an
accelerator control/support memory selected by memid and offset in selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2cmem(struct wal_worker *wrk, unsigned int memid,
 unsigned int memoffs, const uint32_t *outbuf, unsigned int len);

wal_cmem2mb() - generalised function for reading a block of data from any worker control or support

memory

*wrk is a pointer to the worker structure. memid is an index of control/support memory where data are read
from
(WAL_CMEM_... or WAL_..._SMEM_...). memoffs is offset in selected memory (in words not in bytes). *inbuf
is a pointer to memory where data are written to. len is a number of words to copy from accelerator control
memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for reading data from any control/support memory (cmem2mb()) assigned to the
family description structure. The called function should get a pointer to the right memory according to the
required index memid. For accessing support memories they have to define indices greater then indices to

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

15/55

http://zs.utia.cas.cz

control memories. Then the called function should copy a block of data from the accelerator control/support
memory selected by memid and offset in selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_cmem2mb(struct wal_worker *wrk, unsigned int memid,
 unsigned int memoffs, uint32_t *inbuf, unsigned int len);

wal_mb2dmem() - generalised function for writing a block of data to any worker data memory

*wrk is a pointer to the worker structure. simdid is an index of SIMD which data memories are indexed. memid
is an index of control/support memory where data are written to (WAL_CMEM_... or WAL_..._SMEM_...).
memoffs is offset in selected memory (in words not in bytes). *outbuf is a pointer to memory where data are
read from. len is a number of words to copy from *outbuf to accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for writing data to any data memory (mb2dmem()) assigned to the family description
structure. The called function should get a pointer to the right memory according to the required SIMD simdid
and memory index memid. Then the called function should copy a block of data from CPU memory *outbuf to
the accelerator data memory with offset inside the selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_mb2dmem(struct wal_worker *wrk, unsigned int simdid, unsigned int memid,
 unsigned int memoffs, const void *outbuf, unsigned int len);

wal_dmem2mb() - generalised function for writing a block of data to any worker data memory

*wrk is a pointer to the worker structure. simdid is an index of SIMD which data memories are indexed. memid
is an index of control/support memory where data are read from (WAL_CMEM_... or WAL_..._SMEM_...).
memoffs is offset in selected memory (in words not in bytes). *inbuf is a pointer to memory where data are
written to. len is a number of words to copy from accelerator control memory.

This function is designed for calling from user application. The function checks index of the required memory
and then it calls function for reading data from any data memory (dmem2mb()) assigned to the family
description structure. The called function should get pointer to the right memory according to the required
SIMD simdid and memory index memid. Then the called function should copy a block of data from the
accelerator data memory with offset inside the selected memory memoffs.

Return Value: The function returns WAL_RES_... codes.

int wal_dmem2mb(struct wal_worker *wrk, unsigned int simdid, unsigned int memid,
 unsigned int memoffs, void *inbuf, unsigned int len);

wal_set_firmware() - generalised function for writing PicoBlaze firmware

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *fwbuf is a
pointer to a firmware in CPU memory. fwsize is a size of the firmware in words, it can be a negative value to set
full firmware (4096 words).

This function is designed for calling from user application. The function checks if all arguments are correct and
then it calls function for writing PB firmware (set_fw()). The called function should copy firmware from CPU
memory *fwbuf to PicoBlaze6 program memory in the accelerator. The PB program memory is selected by the

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

16/55

http://zs.utia.cas.cz

argument pbid. The firmware needn't be full 4096 word long. The firmware length (in words) can be set by the
argument fwsize. If the fwsize is a negative value (you can use defined value WAL_FW_WHOLE) the function
assumes the FW length is 4096 words.

Return Value: The function returns WAL_RES_... codes.

int wal_set_firmware(struct wal_worker *wrk, int pbid, const unsigned int *fwbuf, int fwsize);

wal_bce_jk_get_id() - implementation of the worker get_id() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). outval is a
pointer to an output buffer for read worker ID.

The function emulates reading worker ID from hardware because the BCE_JK families don't support this
operation in the hardware.

Return Value: The function always returns WAL_RES_OK.

int wal_get_id(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_cap() - implementation of the worker get_cap() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *outval is a
pointer to an output buffer for read capabilities.

The function sends operation WAL_BCE_JK_VVER to accelerator, reads the worker capabilities and returns the
read value in the *outval buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_capabilities(struct wal_worker *wrk, int pbid, unsigned int *outval);

wal_bce_jk_get_lic() - implementation of the get_lic() function for the BCE_JK families

*wrk is a pointer to the worker structure. pbid is an index of used PB firmware (WAL_PBID_...). *outval is a
pointer to an output buffer for read license.

The function reads the license from the worker. For BCE_JK families the license is a 2bit license down-counter
contained in the value returned by accelerator operation WAL_BCE_JK_VVER. The 2bit license counter is
returned in the *outval buffer.

Return Value: The function returns WAL_RES_... codes.

int wal_get_license(struct wal_worker *wrk, int pbid, unsigned int *outval);

All worker abstraction layer API functions listed in Table 6 are precompiled into the MicroBlaze library wal.a and
declared in MicroBlaze header files wal.h and wal_bce_jk.h .

The worker abstraction layer API functions listed in Table 6 support instantiation of several (more than 1)
instances of the 8xSIMD EdkDSP IP core.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

17/55

http://zs.utia.cas.cz

5. EdkDSP IP Core – Integration with dual core ARM A9 Linux

The 8xSIMD EdkDSP IP core is integrated in a tester system with architecture presented in
Figure 2 and photo of the HW presented by Figure 1 and Figure 5.

The dual core ARM Cortex A9 system runs configured PetaLinux 2017.1 operating system and supports:

 Ethernet 1 Gbit

 SSH, telnet, FTP, …

 The system image is located on SD card. After the initial boot, the file system is decompressed to the
RAM FS in DDR3. The SD card file system is mounted and visible in the running Petalinux.

 Symmetrical multiprocessing on two ARM A9 processors

 SDSoC 2017.1 generated HW accelerators with data movers based on:
o Simple DMA with HW supported data movers (DMA data width 32bit or 64bit) with no ARM

interrupts. Simple DMA requires allocation of continuous memory space.
o SG DMA with data movers (DMA data width 32bit or 64bit) with ARM interrupts. SG DMA can

work with continuous allocation of memory or with standard Linux allocation of memory,
where the continuous allocation is not guaranteed.

o HW data movers connected to the advanced cache coherent port resolving in HW the cache
coherency of dual core ARM access and data mover access to DDR3.

The MicroBlaze processor and the 8xSIMD EdkDSP IP core require initialisation and synchronisation with Linux
and the dual core ARM subsystem. This is arranged by the following configuration of reserved DDR3 memory (1
GB)

Table 7: Organisation of DDR3 memory

Memory Area (in Bytes) Size Description

0x0000 0000 … 0x27FF FFFF 640 M Byte Memory managed by standard Linux memory allocation
mechanism. Used by dual core Arm A9 symmetrical
multiprocessing 32 bit Linux

0x2800 0000 … 0x280F FFFF 1 M Byte Reserved for MicroBlaze – ARM communication
It is continuous memory reserved in Linux configuration

 0x2800 0000 … 0x2810 0FFF 4 kByte Reserved for PicoBlaze6 f0 firmware (MicoBlaze and ARM)

 0x2800 1000 … 0x2810 1FFF 4 kByte Reserved for PicoBlaze6 f1 firmware (MicoBlaze and ARM)

 0x2800 2000 … 0x2810 2FFF 4 kByte Reserved for PicoBlaze6 f2 firmware (MicoBlaze and ARM)

 0x2800 3000 … 0x2810 3FFF 4 kByte Reserved for PicoBlaze6 f3 firmware (MicoBlaze and ARM)

 0x2800 4000 … 0x281F FFFF Reserved Reserved for 8xSIMD EdkDSP data (MicoBlaze and ARM)

0x2810 0000 … 0x29FF FFFF 15 M Byte MicroBlaze program & data. Microblaze processor IP is
configured for execution of its code from 0x28100000.
It is a part of the continuous memory reserved in Linux.

0x2A00 0000 … 0x2FFF FFFF 112 M Byte Continuous memory reserved for video frame buffers.

0x3000 0000 … 0x3FFF FFFF 256 M Byte Memory reserved for SDSoC data mover and DMA drivers.

Linux user application uses the four reserved 4k Byte areas for copy of four PicoBlaze6 firmware programs.
These programs can be compiled on the dual core ARM A9 from the C and ASM source codes stored as asci files
on the mounted SD card file system. Compiled firmware programs are read by the user application running on
ARM from the SD card files and copied as data to the reserved 4kB continuous memory areas. MicroBlaze
program (after HW mutex based synchronisation) reads this data and uses them for programming of PicoBlaze6
FSM of the 8xSIMD EdkDSP IP.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

18/55

http://zs.utia.cas.cz

6. Setup of Hardware

HW setup is based on commercially accessible components [1], [2], [3], [4], [5]:

TE0720-2IF; Part: XC7Z020-2CLG484I; 1 GByte DDR; Industrial Grade (-40°C to +85°C) [1].
Heatsink for TE0720, spring-loaded embedded [2].
TE0706-02 Carrier Board from Trenz Electronic [3]
Pmod USBUART Serial converter & interface [4].
TE0790-02 XMOD FTDI JTAG Adapter - Xilinx compatible [5].

See the technical reference manuals (TRM) for the description of the TE0720-02-2IF or TE0720-03-2IF module [1]
and the TE0706-02 carrier board [3].

Figure 5: MicroUSB cable: Pmod USBUART. MiniUSB cable: XMOD FTDI JTAG adapter.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

19/55

http://zs.utia.cas.cz

Set the TE0706-02 carrier board switches and jumpers for the TE0720-03-2IF module as follows:

The TE0720-2IF Zynq device works with all IO-bank supply-voltages 3.3V.

 Set jumpers to generate VCCIOA= VCCIOB= VCCIOC=3.3V
J10: connect 2-3; J11: connect 2-3; J12: connect 2-3

 Set switch S1:
 1=ON 2=ON 3=ON 4=OFF

The TE0706-02 board ARM serial terminal/JTAG is connected to the PC by a Mini USB (type B) cable via the
TE0790-02 XMOD FTDI JTAG adapter [5]. See Figure 1 and Figure 5.

 Set switch in the XMOD module to:

 1=ON 2=OFF 3=ON 4=OFF

The serial terminal for MicroBlaze is connected to the PC by a Micro USB cable via the USBUART pmod.
The J6 connector on the TE0706 carrier board has three lines of 32 pins named:

[A1 … A32]
[B1 … B32]
[C1 … C32].

The USBUART pmod is connected to pins [B1 … B6] of connector J6B (central line B). See the implemented
solution on Figure 5.

 The jumper on the USBUART pmod is set to the default: connect lcl-vcc. With his setup, the USBUART
pmod convertor chip is powered from the 5V USB from the PC and generates the local 3.3V for the
pmod. See Figure 1 and Figure 5.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

20/55

http://zs.utia.cas.cz

7. Reference Application for the 8xSIMD EdkDSP IP Core

The reference application problem is the active acoustics noise cancellation for the hands free telephony.

The near end signal e(i) (voice of a speaker) is disturbed by a disturbance signal received by the near end
microphone. This unknown disturbance y(i) is generated by a known (measured) far end signal (example: noise
from the motor engine) u(i). The objective of the active acoustics noise cancellation is to use the measured
disturbed near end microphone signal d(i) and the signal measured by the far end microphone u(i) for
reconstruction of the near end speaker signal e(i) with cancelled disturbance.

The transfer function from the far end (known) source of the disturbance is modelled by a recursive FIR filter
with 2000 coefficients with sampling rate 90 kHz.

Recursive FIR filter algorithm:
Objective of FIR filter is to generate sequence of modelled system outputs d(i) based on the sequence of system
inputs u(i) and constant vector of N FIR filter coefficients. The generated output sequence includes also the
random additive output noise defined by white noise signal e(i).

x(i) = u(i)
y(i) = [w(1), w(2), … , w(N)] * [x(i), x(i-1), … x(i-N+1)]T

d(i) = y(i) + e(i)

Recursive adaptive LMS filter algorithm:
Objective of adaptive LMS filter is to identify recursively an unknown vector of N=2000 FIR filter coefficients
from a sequence of system inputs u(i) and system outputs d(i) with sampling rate 90 kHz. The algorithm works
under an assumption that the measured output sequence d(i) has been generated by a FIR filter with unknown
coefficients with dimension N=2000 and includes also the unknown random white noise signal. Signal e(i) is
estimated by the adaptive LMS filter.

x(i) = u(i)
y(i) = [w(1), w(2), … , w(N)] * [x(i), x(i-1), … x(i-N+1)]T

e(i) = d[i]-y[i]
[w(1), w(2), … , w(N)] = [w(1), w(2), … , w(N)] + mu * e(i) * [x(i), x(i-1), … x(i-N+1)]

Where N is order of the FIR and LMS filter. N = 2000 in the implemented designs.

u(i) is scalar, floating point input to the system
d(i) is scalar, floating point output of a system
y(i) is scalar, floating point output of FIR filter
e(i) is scalar, floating point prediction error
[w(1), w(2), … , w(N)] is vector of N scalar , floating point FIR filter coefficients, N=2000.
mu is scalar , floating point constant used for control of the speed of convergence of the adaptive LMS filter.

The 8xSIMD EdkDSP IP Core
The 8xSIMD EdkDSP IP Core is configured for accelerated floating point computation of the recursive FIR filter
with constant parameters N=2000 and for acceleration of the adaptive recursive LMS filter with N=2000
unknown coefficients with required sustained sampling frequency 90 kHz. The FIR filter models the environment
and generates the sequence of u(i), d(i) data measurements. The LMS filter serves for reconstruction of the
unknown e(i) sequence – the speaker voice with partially cancelled disturbance from the far distance source.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

21/55

http://zs.utia.cas.cz

Requirements and main implementation results (for the floating point FIR & LMS filter implementation on the
8xSIMD EdkDSP IP) are listed in Table 8.

Table 8: Requirements and results.

Parameter Requirement SW MicroBlaze 100 MHz 8xSIMD EdkDSP 120 MHz

FIR filter sampling rate Order N=2000 90 kHz 2.5 kHz (NO) 288 kHz (YES)

FIR sustained performance (MFLOPs) 360 MFLOPs 10 MFLOPs (NO) 1152 MFLOPs (YES)

LMS filter sampling rate Order N=2000 90 kHz 1.25 kHz (NO) 92 KHz (YES)

LMS sustained performance (MFLOPs) 720 MFLOPs 10 MFLOPs (NO) 738 MFLOPs (YES)

Bit exact identical results for 8xSIMD
EdkDSP IP and MB (FIR and LMS)

Required YES YES

Parallel EdkDSP computation and data
transfers to/from DDR3 by MB

Required YES YES

Runtime change of 8xSIMD EdkDSP IP Required NA YES

Embedded 8xSIMD EdkDSP C compiler Required NA YES

Compatibility with SDSoC 2017.1 Required YES YES

Compatibility with PetaLinux 2017.1 Required YES YES

Compatibility with free SDK 2017.1
and free edition of Vivado HLS 2017.1

Required YES YES

Summary of main results:

 The required LMS filter sampling rate 90 KHz (with N=2000) was reached.

 The maximum is 92 kHz for the adaptive LMS filter and 288 kHz for the FIR filter.

 The sustained floating-point performance of the 8xSIMD EdkDSP is 738 MFLOPs in case of the adaptive
LMS filter and 1152 MFLOPs in case of the FIR filter.

 The 8xSIMD EdkDSP operates in parallel to the Cortex A9 processor without additional computing load.

 The 8xSIMD EdkDSP operates in parallel to each of the 21 Linux examples and 19 standalone examples
of HW accelerators generated from selected Cortex A9 C/C++ functions in the Xilinx SDSoC 2017.1
design environment.

 The embedded C/ASM compiler utilities for the 8xSIMD EdkDSP accelerator run as Linux applications on
the dual core Arm Cortex A9 processor. These utilities can re-compile new EdkDSP firmware from the
modified C/ASM source code in the runtime.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

22/55

http://zs.utia.cas.cz

8. Installation and Use of Base Evaluation Package

This chapter describes the installation and use of a base evaluation package. Package is demonstrating:

 In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP. ILA
works with internal buffer for 8k samples and operates at 120 MHz. See Figure 7, Figure 8, Figure 9,
Figure 10.

 The standalone examples support ILA and additionally can display the on-chip temperature via JTAG. See
Figure 11

 Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6
finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point
computation sequences performed in the 8xSIMD data flow unit (DFU).
This embedded compilation is supported for the Linux examples. See Figure 12 Figure 13, Figure 14.

 There is no need to install Xilinx SDK 2017.1 or Xilinx Vivado 2017.1 tools.

 The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the
free Xilinx Lab Vivado 2017.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC

 The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be also performed
from a 32bit PC with the Xilinx Lab Vivado 2016.4 tool installed on Win7 (32bit) or Win 10 (32bit).

 The linux target examples support 1GBit Ethernet, SSH telnet and file system management tools like the
Total Commander for an Ethernet based access from PC to the SD card files and editing of these files
from user PC.

The base evaluation package provides 21 demos for the Linux target and the 19 precompiled demos for the
standalone target. Table 9 describes demos, PL resources and the HW/SW SDSoC 2017.1. acceleration data.

Table 9: Description of ARM SDSoC acceleration examples compatible with 8xSIMD EdkDSP IP

Linux

HW/SW
Accel.

Stand-
alone

HW/SW
Accel.

Description of ARM SDSoC acceleration examples. All examples are extended versions
of the Xilinx GitHub SDSoC 2017.1 examples. SW extensions support the initialisation
of the MicroBlaze processor and the 8xSIMD EdkDSP IP core.

t01_l

7.86x

t01_s

10.08x

array_partition - This example shows how to use array partitioning to improve
performance of a hardware function.
Slices: 78.28% Luts: 46.27% Registers: 29.12% Block RAM: 91.79% DSPs: 79.55%

t02_l

t02_s burst_rw - This is simple example of using AXI4-master interface for burst read and
write.
Slices: 68.96% Luts: 52.59% Registers: 24.57% Block RAM: 51.43% DSPs: 9.55%

t03_l

19.06x

t03_s

20.36x

custom_data_type - This is a simple example of RGB to HSV conversion to demonstrate
Custom Data Type usage in hardware accelerator. Xilinx HLS compiler supports custom
data type to operate within the hardware function and also it acts as a memory
interface between PL to DDR3.
Slices: 74.23% Luts: 49.58% Registers: 26.35% Block RAM: 51.43% DSPs: 10.91%

t04_l

0.584x

t04_s

0.59x

data_access_random - This is a simple example of matrix multiplication (Row x Col) to
demonstrate random data access pattern.
Slices: 78.04% Luts: 51.03% Registers: 28.83% Block RAM: 62.86% DSPs: 13.64%

t05_l

t05_s

dependence_inter - This is a simple example to demonstrate inter dependence
attribute. Using inter dependence attribute user can provide additional dependency
details to compiler which allow compiler to perform unrolling/pipelining to get better
performance.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

23/55

http://zs.utia.cas.cz

5.67x 6.25x Slices: 73.64% Luts: 47.76% Registers: 26.05% Block RAM: 55.00% DSPs: 22.27%

t06_l

12.6x

t06_s

7.73x

direct_connect - This is a simple example of matrix multiplication with matrix addition
(Out = (A x B) + C) to demonstrate direct connection which helps to achieve increasing
in system parallelism and concurrency.
Slices: 87.95% Luts: 57.94% Registers: 33.76% Block RAM: 95.36% DSPs: 82.27%

t07_l t07_s dma_sg - This example demonstrates how to use Scatter-Gather DMAs for data
transfer to/from hardware accelerator.
Slices: 84.95% Luts: 56.38% Registers: 32.39% Block RAM: 59.29% DSPs: 9.55%

t08_l t08_s dma_simple - This example demonstrates how to insert Simple DMAs for data transfer
between user program and hardware accelerator.
Slices: 78.20% Luts: 50.57% Registers: 28.17% Block RAM: 56.43% DSPs: 9.55%

t09_l Not
Imple-
mented
as
Stand-
Alone

file_io_manr_sobel - Linux video processing application that reads input video from a
file and writes out the output video to a file. Video processing includes Motion
Adaptive Noise Reduction (MANR) followed by a Sobel filter for edge detection. You
can run it by supplying a 1080p YUV422 file as input with limiting number of frames to
a maximum of 20 frames.
Slices: 89.23% Luts: 58.91% Registers: 33.60% Block RAM: 62.50% DSPs: 10.91%

t10_l Not
Imple-
mented
as
Stand-
Alone

file_io_optical - Linux video processing application that reads input video from a file
and writes out the output video to a file. Video processing performs LK Dense Optical
Flow over two Full HD frames video file. You can run it by supplying a 1080p YUV422
file route85_1920x1080.yuv as input.
Slices: 99.71% Luts: 81.96% Registers: 49.53% Block RAM: 85.00% DSPs: 35.45%

t11_l t11_s full_array_2d - This is a simple example of accessing full data from 2D array.
Slices: 72.08% Luts: 49.26% Registers: 26.47% Block RAM: 87.50% DSPs: 12.27%

t12_l t12_s hello_vadd - This is a basic hello world kind of example which demonstrates how to
achieve vector addition using hardware function.
Slices: 73.42% Luts: 48.75% Registers: 26.04% Block RAM: 53.21% DSPs: 9.55%

t13_l t13_s lmem_2rw - This is a simple example of vector addition to demonstrate how to utilize
both ports of Local Memory.
Slices: 74.38% Luts: 49.39% Registers: 26.42% Block RAM: 55.36% DSPs: 9.55%

t14_l t14_s loop_fusion - This example will demonstrate how to fuse two loops into one to
improve the performance of a C/C++ hardware function.
Slices: 74.77% Luts: 49.95% Registers: 27.02% Block RAM: 53.21% DSPs: 15.00%

t15_l t15_s loop_perfect - This nearest neighbor example is to demonstrate how to achieve better
performance using perfect loop.
Slices: 86.75% Luts: 60.82% Registers: 32.78% Block RAM: 53.21% DSPs: 15.45%

t16_l t16_s loop_pipeline - This example demonstrates how loop pipelining can be used to
improve the performance of a hardware function.
Slices: 73.42% Luts: 48.75% Registers: 26.04% Block RAM: 53.21% DSPs: 9.55%

t17_l

7.31x

t17_s

9.93x

loop_reorder - This is a simple example of matrix multiplication (Row x Col) to
demonstrate how to achieve better pipeline II factor by loop reordering.
Slices: 81.13% Luts: 57.76% Registers: 30.33% Block RAM: 91.79% DSPs: 81.82%

t18_l
1.91x

t18_s
4.09x

shift_register - This example demonstrates how to shift values in each clock cycle.
Slices: 76.20% Luts: 49.99% Registers: 27.48% Block RAM: 53.21% DSPs: 24.55%

t19_l t19_s sys_port - This is a simple example which demonstrates sys_port usage.
Slices: 88.41% Luts: 58.06% Registers: 34.23% Block RAM: 61.07% DSPs: 9.55%

t20_l
0.07x

t20_s
0.17x

systolic_array - Matrix multiplication implemented as systolic array.
Slices: 80.22% Luts: 54.76% Registers: 30.10% Block RAM: 53.21% DSPs: 61.36%

t21_l t21_s wide_memory_rw - Wide memory read write 64 bit wide.
Slices: 73.82% Luts: 47.24% Registers: 26.98% Block RAM: 55.36% DSPs: 9.55%

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

24/55

http://zs.utia.cas.cz

Installation and use of the Base Evaluation Package – standalone examples

In case of standalone target:

(1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package

TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1.zip
to directory of your choice. We will use:
C:\TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\

(2) Select one of the examples (t01_s … t21_s) and copy the content of sd_card directory to the SD card.
Example. Copy BOOT.bin from
C:TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\SD_release\t01_s\sd_card\BOOT.bin
to the root of the SD card as single file.

(3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect another USB cable to the USBUART Pmod module present in the J5 connector to the PC. It will
serve as MicroBlaze terminal.

(5) Power ON the carrier board and open putty (or similar) terminal client for both USB serial lines. Set the
serial communication to: [speed 115200, data bits 8, stop bits 1, parity none and flow control None] in
both cases.

(6) Insert SD card to the TE0706-02 carrier board.

(7) Reset the carrier board (S2 button).

- The standalone system will start. See
Figure 6.
- The ARM terminal will present output from the t01_s example.
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP. See
Figure 6.

(8) In PC, open the Vivado Lab tool. See Figure 7.

Open Hardware Manager
Press Auto Connect icon in Hardware window
- Open description of debug nets present in file, thus specifying the probes file

 c:\TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\SD_release\t01_s\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 8, Figure 9, Figure 10.
- Open new perspective and observe the chip temperature. See Figure 11.

(9) Close Vivado Lab tool project.

(10) Remove SD card and reprogram it in PC to test another example.

(11) Go to step (6).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

25/55

http://zs.utia.cas.cz

Figure 6: Release demo t01_s. ARM and 8xSIMD EdkDSP terminal output.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

26/55

http://zs.utia.cas.cz

Figure 7: Release demo t01_s. Vivado Lab Tool is open.

The Vivado Lab tool is connected to the chip. You have to specify the probes file (See Figure 8).

X:\SD_release\t01_s\debug_nets.ltx

Names and parameters of probes are added to the ILA Waveform window. See Figure 8.

Use + to select probes used for triggering, and select the condition for the trigger for each probe and their
combinations (use AND as default).

Some of debug probes can be used to trigger the capturing of data. The ILA can be triggered from the EdkDSP
firmware running on the PicoBlaze6 running inside of the (8xSIMD) EdkDSP unit.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

27/55

http://zs.utia.cas.cz

Figure 8: Release demo t01_s. Probes file is specified. Trigger conditions are set.

In SDK, open the X:\zsys\edkdsp\a\f2.c file. See section of the LMS C code firmware. This C code includes the
additional call to the pb2dfu_set() function used for selective triggering of the ILA scope in specified point of
computation of the EdkDSP accelerator.

 pb2dfu_set(0x20, 0); // To provide the trigger (0x00 on port 0x20) for the ILA
 for (i = 0; i < 4; i++) {
 for (j = 2; j <= 3; j++) {
 lms(j, n, op);
 pb2mb_eoc(led);
 }
 }
 …

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

28/55

http://zs.utia.cas.cz

Figure 9: Release demo t01_s. Details of the 8xSIMD EdkDSP LMS filter computation.

In Vivado Lab Edition, in the ILA configuration page, change the trigger condition to:
(bce_port_wr ==1) AND (bce_port_id[0:7]==0x20) AND (bce_port[0:7]==0x00)

In Vivado Lab Edition 2017.1, arm the hw_ila_1 core by pressing Run Trigger button in Hardware window.
Armed hw_ila_1 core will wait until the recompiled EdkDSP firmware comes to the point, where PicoBlaze6 calls
function pb2dfu_set(0x20, 0).

ILA core starts to capture 8K samples of all debug signals with the sampling rate 120 MHz. Data are captured and
sent via jtag USB connection in Vivado Lab Edition 2017.1 for visualisation and analysis in the waveform window.

This snapshot stores the detailed trace of the initial 8192 clock cycles of the FIR filter computation.
See Figure 10.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

29/55

http://zs.utia.cas.cz

Figure 10: Release demo t01_s. Details of the 8xSIMD EdkDSP FIR filter computation.

In Vivado Lab. Edition, in the ILA configuration page, change the trigger condition to bce_port[0:7]==0x01: to
capture start of the FIR filter. See Figure 10. The PicoBlaze C code of the FIR example is listed in Figure 17.
The Vivado Lab. screens presented in Figure 9 and Figure 10 display also the 1024 samples before the trigger
event. This mode is set in the trigger mode settings window. Screens display how the PicoBlaze6 controller reset
signal bce_r_pb is deactivated. Picoblaze6 reads the 8 bit parameters op and n from the MicroBlaze before the
trigger evet. See complete program listing in Figure 17 with these initial lines of the PicoBlaze6 SW:
 …
 void main() {
 op = mb2pb_read_data();
 if (op == C_DFU_OP_VVER) {
 pb2dfu_set(C_DFU_CNT, 0);
 pb2dfu_set(C_DFU_OP, op);
 pb2dfu_wait4hw();
 } else {
 n = mb2pb_read_data();
 pb2dfu_set(0x20, 0); // To provide the trigger (0x00 on port 0x20) for the ILA

 …

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

30/55

http://zs.utia.cas.cz

Figure 11: Release demo t01_s. Stanalone demo supports measurements of the chip temperature.

The standalone demos support measurement of the chip temperature in a new dashboard connected to the
XADC system monitor.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

31/55

http://zs.utia.cas.cz

Installation and use of Base Evaluation Package – linux examples

In case of Linux target:

(1) In Win 7 or Win 10 (32bit or 64bit PC), unzip the basic evaluation package
TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1.zip
to directory of your choice. We will use:
C:\TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\

(2) Select one of the examples (t01_l … t21_l) and copy the content of sd_card directory to the SD card.
Example. Copy content of the directory from
C:\TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\SD_release\t01_l\sd_card\
to the root of the SD card

(3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect Micro USB cable from to the USBUART Pmod module present in the J5 connector) to the PC. It
will serve as MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control
None] in both cases.

(6) Insert SD card to the TE0706-02 carrier board.

(7) Reset the carrier board.

- The linux system will start. See Figure 12.
 type user name:

 root

 type password:

 root

- Mount SD card to the directory (See Figure 13) /mnt by typing:

 mount /dev/mmcblk0p1 /mnt

- Change directory (See Figure 13) to /mnt

 cd /mnt

-Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (See Figure 13):
 ./edkdsp/tools/cc_fx.sh ./edkdsp/a
(or ./edkdsp/tools/cc_fx.sh ./edkdsp/b or ./edkdsp/tools/cc_fx.sh ./edkdsp/c …)

- The PicoBlaze6 C source code f0.c f1.c f2.c and f3.c from the directory ./edkdsp/a
 are compiled by the EdkDSP C compiler to the firmware files (See Figure 13):

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

32/55

http://zs.utia.cas.cz

 ./f0.dec ./f1.dec ./f2.dec ./f3.dec

- The ARM terminal will present output from the EdkDSP C compiler
- The MicroBlaze terminal is not active. EdkDSP is not programmed yet.

- Start the linux application (See Figure 14) by typing:

./t01_l.elf

- The ARM terminal will present output from the t01_l.elf example. See Figure 14.

- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP
 working with new firmware programs as re-compiled by the EdkDSP C compiler
 from the C source code files: f0.c f1.c f2.c and f3.c
 from the directory ./edkdsp/a
 The output from the 8xSIMD EdkDSP is identical to the standalone output. See
Figure 6.

(8) In PC, open the Vivado Lab tool. See Figure 7.
- Open Hardware Manager
- Press Auto Connect icon in Hardware window
- Open description of debug nets present in file, thus specifying the probes file. See Figure 8.

 c:\TE0720_MB_EdkDSP_1x8_zsys_2if_ila_8k_usb_sw1\SD_release\t01_s\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP. See Figure
9, Figure 10.

(9) Close Vivado Lab tool project.

(10) Remove SD card and reprogram it in PC to test another example.

(11) Go to step (6).

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

33/55

http://zs.utia.cas.cz

Figure 12: Release demo t01_l. Linux start.

Figure 13: Release demo t01_l. Login, Compilation of firmware in the EdkDSP C Compiler.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

34/55

http://zs.utia.cas.cz

Figure 14: Release demo t01_l. Program and start 8xSIMD EdkDSP demo.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

35/55

http://zs.utia.cas.cz

9. Installation and Use of Extended Evaluation Package

The extended evaluation package is offered to the ECSEL PRODUCTIVE 4.0 project partners [8] on their written
request to UTIA for free. See the license conditions listed in next sections of this report.

The extended evaluation package supports:

 Compilation from C source code and debug for the MicroBlaze processor for Linux and standalone
targets

 Creation and Release of SD cards with new compiled MicroBlaze SW and new compiled Picoblaze6
firmware for Linux and standalone targets.

 In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug of the 8xSIMD EdkDSP IP. ILA
works with internal buffer for 8k samples and operates at 120 MHz.

 Embedded Compilation from a C/ASM source code to firmware for the reprogrammable PicoBlaze6
finite state machine (FSM) scheduling inside of the 8xSIMD EdkDSP IP core the floating point
computation sequences performed in the 8xSIMD data flow unit (DFU).
This embedded compilation is supported for the Linux examples.

 The standalone examples also support ILA and additionally can display the on-chip temperature via
JTAG.

 The extended evaluation package requires the Xilinx SDK 2017.1 tools (download is free).
SDK serves for compilation of MicroBlaze code, download of compiled MicroBlaze code via JTAG and for
the debug of this code in parallel with the ILA inspection/observation/debug of the EdkDSP IP core.

 The In-circuit Logic Analyser (ILA) JTAG based inspection/observation/debug can be performed from the
free Xilinx Lab Vivado 2017.1 tool installed on Win7 (64bit) or Win 10 (64bit) PC.

 The linux target examples support 1G Bit Ethernet, SSH telnet and file system management tools like the
Total Commander for an Ethernet based access from PC to the SD card files and editing of these files
from user PC.

The extended evaluation package provides 21 precompiled designs for the linux target and 19 precompiled
designs for the standalone target as described in Table 9 .

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

36/55

http://zs.utia.cas.cz

Installation and use of extended evaluation package – standalone examples

In case of standalone target:

(1) In Win 7 or Win 10 (64bit PC), unzip the basic evaluation package

TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL.zip
to directory of your choice. We will use:

C:\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL

In Xilinx SDK 2017.1 create a new workspace in the directory

X:\zsys

Figure 15: Create new SDK 2017.1 workspace.

Import (with copy) all SDK projects from

C:\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL\zsys

to the SDK workspace X:\zsys

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

37/55

http://zs.utia.cas.cz

Figure 16: Import the extended evaluation package projects into the SDK Workspace.

(2) Select one of the examples (t01_s … t21_s) and copy the content of the sd_card directory to the SD card.
Example. Copy BOOT.bin from

X:\SD_debug\t01_s\sd_card\BOOT.bin

to the root of the SD card as a single file.

(3) Connect Mini USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect Micro USB cable to the USBUART Pmod module present in the J5 connector to the PC. It will serve
as MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None]
in both cases.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

38/55

http://zs.utia.cas.cz

Figure 17: SDK compiles MicroBlaze SW projects for the standalone debug target.

(6) Insert SD card to the TE0706-02 carrier board.

(7) Reset the carrier board.

- The standalone system will start.
- The ARM terminal will present output from the t01_s example. The Arm application is waiting for the
MicroBlaze.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

39/55

http://zs.utia.cas.cz

Figure 18: Debug demo t01_l. Execution of the ./t01_s.elf example from the SD card.

- The Xilinx SDK project edkdsp_fp12_1x8_s already includes PicoBlaze6 firmware header files
 fill_f0_program_store.h, fill_f1_program_store.h, fill_f2_program_store.h, fill_f3_program_store.h
 These files can be recreated from C source code by the EdkDSP C compiler in the
 linux target session as described in the next section.

- In the Xilinx SDK workspace, compile the edkdsp_fp12_1x8_s project with the existing (or new, recompiled)
PicoBlaze6 firmware headers fill_f0_program_store.h, fill_f1_program_store.h, fill_f2_program_store.h,
fill_f3_program_store.h.

- In the Xilinx SDK workspace, select Debug of MicroBaze project edkdsp_fp12_1x8_s. In the Debug
Configurations, select “No reset”, unselect “Run ps7_init”, unselect “Run ps7_post_config” click “Apply”.

Figure 19: Debug demo t01_s. Open project edkdsp_fp12_1x8_s for debug.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

40/55

http://zs.utia.cas.cz

Figure 20: Debug demo t01_s. Start the free-run from the debugger.

- In the SDK debugger, step through the MicroBlaze source code, inspect content of variables, set the
 breakpoints, step through the code and finally select the free run of the MicroBlaze code.
- At this stage, the ARM terminal will present the output from the ARM t01_s.elf example. See Figure 21.

Figure 21: Debug demo t01_s. Arm started EdkDSP and runs SDSoC akcelerátor demo.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

41/55

http://zs.utia.cas.cz

The MicroBlaze terminal will present output from the debugged MicroBlaze and the 8xSIMD
EdkDSP IP core. See Figure 22.

Figure 22: Debug demo t01_s. MicroBlaze project output (Compiled for Debug).

(8) In PC, open the Vivado Lab tool. See Figure 7.
 - Open Hardware Manager.
 - Press Auto Connect icon in Hardware window to connect to the board via JTAG line.
 - Open description of debug nets present in file, thus specifying the probes file.

 X:\SD_debug\t01_s\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 8, Figure 9, Figure 10.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

42/55

http://zs.utia.cas.cz

- Open new perspective and observe the chip temperature. See Figure 11. Close Vivado Lab tool project.

(9) In SDK debugger, stop MicroBlaze processor and close the debug session.
(10) Remove SD card and reprogram it in the PC to test another example.
(11) Go to step (6).

Installation and use of Extended Evaluation Package – linux examples

In case of Linux target:

(1) In Win 7 or Win 10 (64bit PC), unzip the basic evaluation package

TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL.zip
to directory of your choice. We will use:

C:\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL\

Open new Xilinx SDK 2017.1 workspace in the directory

X:\zsys

Import (with copy) all SDK projects from

C:\TE71\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL\zsys\

to the SDK.

(2) Select one of the examples (t01_l … t21_l) and copy the content of sd_card directory to the SD card.
Example. Copy content of the directory from
X:\SD_debug\t01_l\sd_card\
to the root of the SD card

(3) Connect USB cable from J7 connector to the PC. It will serve as ARM terminal and JTAG line.

(4) Connect USB cable to the USBUART Pmod module present in the J5 connector to the PC. It will serve as
MicroBlaze terminal.

(5) Power ON the carrier board. And open putty (or similar) terminal client for both USB serial lines.
Set the serial communication to [speed 115200, data bits 8, stop bits 1, parity none and flow control None]
in both cases.

(6) Insert SD card to the TE0706-02 carrier board.

(7) Reset the carrier board.
- The linux system will start. See Figure 23.
- Type the linux user name and password:

 root
 root

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

43/55

http://zs.utia.cas.cz

Figure 23: Compiled EdkDSP firmware. Started debug demo - linux target t01_l.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

44/55

http://zs.utia.cas.cz

- Mount SD card to the directory (See Figure 23) /mnt by typing:

 mount /dev/mmcblk0p1 /mnt

- Change directory to /mnt

 cd /mnt

-Compile firmware for the PicoBlaze6 by the EdkDSP C compiler (see Figure 23) :
 ./edkdsp/tools/cc_fx.sh ./edkdsp/a
 (or ./edkdsp/tools/cc_fx.sh ./edkdsp/b or ./edkdsp/tools/cc_fx.sh ./edkdsp/c etc.)

- The PicoBlaze6 C source code files from the directory ./edkdsp/a
 ./edkdsp/a/f0.c ./edkdsp/a/f1.c ./edkdsp/a/f2.c ./edkdsp/a/f3.c
 (or from the directory ./edkdsp/b or from the directory ./edkdsp/c etc.)

 are compiled by the EdkDSP C compiler to the firmware files:

 ./f0.dec ./f1.dec ./f2.dec ./f3.dec

- Optionally, you can also compile the PicoBlaze6 firmware into header files for the
 standalone target. Compile firmware for the PicoBlaze6 by the EdkDSP C compiler
 (See Figure 23):
 ./edkdsp/tools/cs_fx.sh ./edkdsp/a
 (or ./edkdsp/tools/cs_fx.sh ./edkdsp/b or ./edkdsp/tools/cs_fx.sh ./edkdsp/c etc.)

Generated header files with PicoBlaze6 firmware for the standalone target EdkDSP IP target are created and
stored in the SD card root directory:

 ./fill_f0_program_store.h ./fill_f1_program_store.h
 ./fill_f2_program_store.h ./fill_f3_program_store.h

These headers serve for the standalone MicroBlaze projects. Headers are compiled directly into the
debugged MicroBlaze standalone application as described above.

- Execute the ARM linux application See Figure 23.

- The ARM terminal will present output from the EdkDSP C compiler
- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP

- Start the linux application by typing

./t01_l.elf

- The ARM terminal will present output from the t01_l.elf example. The Arm application is waiting for the
MicroBlaze in this stage.

- In the Xilinx SDK environment on the PC, select debug project (See Figure 24):
 X:\zsys\edkdsp_fp12_1x8_l

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

45/55

http://zs.utia.cas.cz

Figure 24: Select MicroBlaze project edkdsp_fp12_1x8_l for debug.

- In the SDK debugger, step through the MicroBlaze source code, inspect the content of variables, set
breakpoints etc. See
Figure 25.

- In the SDK debugger, select free run of the MicroBlaze code. See
Figure 25.

- The MicroBlaze terminal will present output from the 8xSIMD EdkDSP IP working with new
 firmware programs as re-compiled by the EdkDSP C compiler from the C source code files:
 f0.c, f1.c, f2.c and f3.c from the directory ./edkdsp/a
 Output is identical to Figure 22.

- The ARM terminal will continue to present output from the t01_l.elf example. See Figure 26.

- In ARM terminal, type:
 ls - lr

 to see listing of files compiled by the EdkDSP C compiler. See Figure 26.

 The compiled header files fill_f0_program_store.h, fill_f1_program_store.h, fill_f2_program_store.h, and
 fill_f3_program_store.h. can be used as new source code for the standalone MicroBlaze project
 X:\zsys\edkdsp_fp12_1x8_s .

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

46/55

http://zs.utia.cas.cz

Figure 25: Select free run of MicroBlaze project edkdsp_fp12_1x8_l.

(8) In PC, open the Vivado Lab tool. See Figure 7.
- Open Hardware Manager.
- Press Auto Connect icon in Hardware window to connect to the board via JTAG line
- Open description of debug nets present in file, thus specifying the probes file

- Open description of debug nets present in file

 X:\SD_debug\t01_l\debug_nets.ltx

- Set the ILA trigger conditions and observe process of computation in the 8xSIMD EdkDSP IP.
 See Figure 8, Figure 9, Figure 10.

(9) Close Vivado Lab tool project.

(10) In SDK debugger, stop MicroBlaze processor and close the debug session.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

47/55

http://zs.utia.cas.cz

(11) Exit from linux by typing on the ARM terminal:
 exit

(12) Remove SD card and reprogram it in the PC to test another example.
(13) Go to step (6).

Figure 26: Output from ARM MicroBlaze fort t01_l. Compiled EdkDSP firmware.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

48/55

http://zs.utia.cas.cz

Updating of the release SD card images for new standalone-release-target

Modified Picoblaze6 C source code can be compiled to firmware headers in the embedded EdkDSP C compiler
(linux target). Resulting headers can be included in the SDK MicroBlaze standalone release target project. See
Figure 17. The standalone-release-target SD card image can be updated by re-compilation of the (possibly
modified) C source code for the MicroBlaze in the SDK project with included updated PicoBlaze firmware header
files. See Figure 27.

Figure 27: Create BOOT.bin for the t01_s demo.

Copy the content of directory:
C:\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL\SD_release\t01_s\uboot\
to
X:\SD_release\t01_s\uboot\

The new BOOT.bin image can be created from these files:

X:\SD_release\t01_s\uboot\t01_s.bif
X:\SD_release\t01_s\uboot\zynq_fsbl.elf
X:\SD_release\t01_s\uboot\zynq_wrapper.bit.elf
X:\SD_release\t01_s\uboot\t01_s.elf
X:\SD_release\t01_s\uboot\edkdsp_fp12_1x8_s.elf

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

49/55

http://zs.utia.cas.cz

Replace the old
X:\SD_release\t01_l\uboot\edkdsp_fp12_1x8_s.elf
with the new file recompiled in the SDK (with new PicoBlaze6 firmware headers) from the SDK project directory:
X:\zsys\edkdsp_fp12_1x8_s\Release\edkdsp_fp12_1x8_s.elf

Use the BOOT.bin generation utility (In the SDK workspace: Xilinx Tools -> Create Boot Image) and create the
new BOOT.bin file (See Figure 27):
X:\SD_release\t01_s\uboot\BOOT.bin

Copy this new BOOT.bin file it to:
X:\SD_release\t01_s\sd_card\BOOT.bin

The content of the standalone-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware.

Updating of the release SD card images for new linux-release-target

The linux-release-target SD card image can be updated by re-compilation of the (possibly modified) C source
code for the MicroBlaze in the SDK project. See Figure 28.

Figure 28: Create BOOT.bin for the t01_l demo.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

50/55

http://zs.utia.cas.cz

Copy the content of directory:
C:\TE0720_MB_EdkDSP_1x8_zsys_SDK_2if_ila_8k_usb_sw1_INSTALL\SD_release\t01_l\uboot\
to
X:\SD_release\t01_l\uboot\

The new BOOT.bin image can be created from these files:

X:\SD_release\t01_l\uboot\t01_l.bif
X:\SD_release\t01_l\uboot\zynq_fsbl.elf
X:\SD_release\t01_l\uboot\zynq_wrapper.bit.elf
X:\SD_release\t01_l\uboot\u-boot.elf
X:\SD_release\t01_l\uboot\edkdsp_fp12_1x8_l.elf

Replace

X:\SD_release\t01_l\uboot\edkdsp_fp12_1x8_l.elf

with a new file recompiled in the SDK project directory:

X:\zsys\edkdsp_fp12_1x8_l\Release\edkdsp_fp12_1x8_l.elf

Use the BOOT.bin generation utility of the SDK and create the new BOOT.bin file:

X:\SD_release\t01_l\uboot\BOOT.bin

Copy this new BOOT.bin file to:
X:\SD_release\t01_l\sd_card\BOOT.bin

Update the linux-release-target SD card with the actual PicoBlaze6 C programs and actual firmware files
compiled from C source code by the embedded EdkDSP C compiler:

X:\SD_release\t01_l\sd_card\edkdsp\a\f0.c
X:\SD_release\t01_l\sd_card\edkdsp\a\f1.c
X:\SD_release\t01_l\sd_card\edkdsp\a\f2.c
X:\SD_release\t01_l\sd_card\edkdsp\a\f3.c

X:\SD_release\t01_l\sd_card\f0.dec
X:\SD_release\t01_l\sd_card\f1.dec
X:\SD_release\t01_l\sd_card\f2.dec
X:\SD_release\t01_l\sd_card\f3.dec

The content of the linux-release-target SD card is updated with new MicroBlaze and PicoBlaze6 firmware.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

51/55

http://zs.utia.cas.cz

10. References

[1] TE0720-2IF; Part: XC7Z020-2CLG484I; 1 GByte DDR; Grade: Industrial;

http://shop.trenz-electronic.de/en/TE0720-03-2IF-Xilinx-Zynq-module-XC7Z020-2CLG484I-ind.-temp.-range-1-Gbyte

https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV02/Documents/TE0720%20User%20Manual-v45-
20150323_1407.pdf

https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV03/Documents/TRM-TE0720-03.pdf

[2] Heatsink for TE0720, spring-loaded embedded;

https://shop.trenz-electronic.de/en/26922-Heatsink-for-TE0720-spring-loaded-embedded?c=38

[3] TE0706 - Carrierboard for Trenz Electronic Modules with 4 x 5 cm Form factor
https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-
x-5-cm-Form-factor?c=261

 https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/carrier_boards/TE0706/REV02/documents/SCH-TE0706-02.PDF

[4] Pmod USBUART: Serial converter & interface.
https://shop.trenz-electronic.de/en/24242-Pmod-USBUART-USB-to-UART-Interface?c=80

[5] XMOD FTDI JTAG Adapter - Xilinx compatible
https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible

[6] Vivado HLx Web Install Client - 2017.1.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-
tools/2015-4.html

[7] SDSoC - 2017.1 Full Product Installations.
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-
environments/sdsoc/2015-4.html

[8] PRODUCTIVE 4.0 Project www page in UTIA with pointers to evaluation packages for download
http://sp.utia.cz/index.php?ids=projects/productive40

http://shop.trenz-electronic.de/en/TE0720-03-2IF-Xilinx-Zynq-module-XC7Z020-2CLG484I-ind.-temp.-range-1-Gbyte
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV02/Documents/TE0720%20User%20Manual-v45-20150323_1407.pdf
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV02/Documents/TE0720%20User%20Manual-v45-20150323_1407.pdf
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/TE0720/REV03/Documents/TRM-TE0720-03.pdf
https://shop.trenz-electronic.de/en/26922-Heatsink-for-TE0720-spring-loaded-embedded?c=38
https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-x-5-cm-Form-factor?c=261
https://shop.trenz-electronic.de/en/TE0706-02-TE0706-Carrierboard-for-Trenz-Electronic-Modules-with-4-x-5-cm-Form-factor?c=261
https://www.trenz-electronic.de/fileadmin/docs/Trenz_Electronic/carrier_boards/TE0706/REV02/documents/SCH-TE0706-02.PDF
https://shop.trenz-electronic.de/en/24242-Pmod-USBUART-USB-to-UART-Interface?c=80
https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/2015-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-4.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/sdx-development-environments/sdsoc/2015-4.html
http://sp.utia.cz/index.php?ids=projects/productive40

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

52/55

http://zs.utia.cas.cz

11. Base Evaluation Package

The base evaluation package can be downloaded from UTIA www pages [8] free of charge.

Deliverables:
The base evaluation package [8] includes evaluation bitstreams with single (8xSIMD) EdkDSP IP working in
parallel with selected HW-accelerated SDSoC algorithms on the Trenz Electronic TE0720-2IF module [1] located
on the Trenz Electronic TE0706-02 carrier [3] with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter
[5].

The evaluation package [8] includes bitstreams compiled with the evaluation version of the (8xSIMD) EdkDSP IP
core. Bitstreams contain these IPs:

bce_fp12_1x8_0_axiw_v1_10_c Evaluation version of the AXI-lite interface
bce_fp12_1x8_40 Evaluation version of the floating point data path

The base evaluation version of the (8xSIMS) EdkDSP IP is compiled into bitstreams with a HW limit on number of
vector operations. The termination of the nonexclusive, non-transferable evaluation license of this evaluation IP
core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation designs run
again after reset (TE0706-02 button S2).

The base evaluation package [8] includes these binary applications:

edkdsppp.elf EdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board.
edkdspcc.elf EdkDSP C compiler binary for ARM PetaLinux running on the evaluation board.
edkdsppsm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, non-
transferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6
processor inside of the 8xSIMD EdkDSP IP in precompiled designs. The source code of these compilers is owned
by UTIA and it is not provided in the evaluation package.

The base evaluation package [8] includes demonstration firmware in C source code for the Xilinx PicoBlaze6
processor for the family of UTIA EdkDSP accelerators for the Trenz Electronic TE0720-2IF module [1] on Trenz
Electronic TE0706-02 carrier board [3].

HW boards are not part of deliverables. HW can be ordered separately from [1] – [5].

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the
software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV
CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

53/55

http://zs.utia.cas.cz

12. Extended Evaluation Package for PRODUCTIVE 4.0 partners

This extended evaluation package includes MicroBlaze and PicoBlaze6 C code and precompiled bitstreams of
HW projects for the Trenz Electronic TE0720-2IF module [1] located on the Trenz Electronic TE0706-02 carrier
[3] with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5] with the evaluation version of the
(8xSIMD) EdkDSP IP. Partners of the ECSEL PRODUCTIVE 4.0 project [8] can ordered this extended package
from UTIA AV CR, v.v.i., by email request for quotation to kadlec@utia.cas.cz.

UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of
the quotation by the customer, UTIA AV CR, v.v.i., will send to the customer this invoice:

The extended evaluation package with MicroBlaze and PicoBlaze6 C code and precompiled bitstream of HW
projects for the Trenz Electronic TE0720-2IF module [1] located on the Trenz Electronic TE0706-02 carrier [3]
with PMOD USBUART adapter [4] and XMOD FTDI JTAG Adapter [5] with the evaluation version of the 8xSIMD
EdkDSP IP for the partners in the ECSEL PRODUCTIVE 4.0 project
(Without VAT) 0,00 Eur

After receiving confirmation from the PRODUCTIVE 4.0 project partner about the zero-invoice received, UTIA AV
CR, v.v.i. will send within 5 working days by standard mail printed version of this application note together with
DVD with the Deliverables described in this section.

Deliverables:
The extended evaluation package for PRODUCTIVE 4.0 partners [8] includes MicroBlaze and PicoBlaze6 C code
and precompiled bitstreams of HW projects. MicroBlaze and PicoBlaze6 SW projects can be modified and
recompiled by the PRODUCTIVE 4.0 project partner.

The extended evaluation version of the UTIA 8xSIMD EdkDSP accelerator IP is provided in precompiled
bitstreams of HW projects with these IPs:

bce_fp12_1x8_0_axiw_v1_10_c Evaluation version of the AXI-lite interface
bce_fp12_1x8_40 Evaluation version of the floating point data path

The extended evaluation version of the 8xSIMS EdkDSP IP is compiled into bitstream with an HW limit on
number of vector operations. The termination of the nonexclusive, non-transferable evaluation license of this
evaluation IP core is reported in advance by the demonstrator on the PMOD USBUART terminal. The evaluation
designs run again after the reset.

The extended evaluation package [8] includes these binary applications:

edkdsppp.elf EdkDSP C pre-processor binary for ARM PetaLinux running on the evaluation board.
edkdspcc.elf EdkDSP C compiler binary for ARM PetaLinux running on the evaluation board.
edkdsppsm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.
edkdspasm.elf EdkDSP ASM compiler binary for ARM PetaLinux running on the evaluation board.

These binary applications have no time restriction. The user of the evaluation package has nonexclusive, non-
transferable license from UTIA to use these utilities for compilation of the firmware for the Xilinx PicoBlaze6
processor inside of the UTIA EdkDSP accelerators in precompiled designs. The source code of these compilers is
owned by UTIA and it is not provided in the evaluation package.

mailto:kadlec@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

54/55

http://zs.utia.cas.cz

The extended evaluation package for PRODUCTIVE 4.0 partners includes demonstration firmware in C source
code for the Xilinx PicoBlaze6 processor for the family of UTIA EdkDSP accelerators for the Trenz Electronic
TE0720-2IF module [1] on Trenz Electronic TE0706-02 carrier board [3].

The extended evaluation package for PRODUCTIVE 4.0 partners includes SDK SW projects with C source code for
MicroBlaze. The extended evaluation package [8] includes static library for MicroBlaze processor:

libwal.a SDK 2017.1 UTIA static library with EdkDSP API for MicroBlaze

This library has no time restriction. Source code of this library is not provided in this evaluation package.

HW boards are not part of deliverables. HW can be ordered separately from references [1] – [5].

Partners of the ECSEL PRODUCTIVE 4.0 project [8] can order the hardware [1] - [5] directly from the company
Trenz Electronic or order the complete evaluation system from UTIA AV CR, v.v.i.

In case of an order from UTIA AV CR, v.v.i., an email request for a quotation to kadlec@utia.cas.cz is required.
UTIA AV CR, v.v.i., will provide to the PRODUCTIVE 4.0 project partner quotation by email. After confirmation of
the quotation by the PRODUCTIVE 4.0 project partner, UTIA AV CR, v.v.i., will buy from company Trenz Electronic
boards [1]-[5] with cables and power supply. UTIA will assemble and test the complete evaluation system and
send them to the PRODUCTIVE 4.0 project partner for price identical to the price offered by the company Trenz
Electronic plus the transport cost and the VAT.

Any and all legal disputes that may arise from or in connection with the use, intended use of or license for the
software provided hereunder shall be exclusively resolved under the regional jurisdiction relevant for UTIA AV
CR, v. v. i. and shall be governed by the law of the Czech Republic. See also the Disclaimer section.

mailto:kadlec@utia.cas.cz

© 2018 ÚTIA AV ČR, v.v.i.
All disclosure and/or reproduction rights reserved

55/55

http://zs.utia.cas.cz

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed herewith. Except as
otherwise provided in a valid license issued to you by UTIA AV CR v.v.i., and to the maximum extent permitted
by applicable law:

(1) THIS APPLICATION NOTE AND RELATED MATERIALS LISTED IN THIS PACKAGE CONTENT ARE MADE
AVAILABLE "AS IS" AND WITH ALL FAULTS, AND UTIA AV CR V.V.I. HEREBY DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) UTIA AV CR v.v.i. shall not be liable (whether in contract or tort, including negligence, or under any other
theory of liability) for any loss or damage of any kind or nature related to, arising under or in connection with
these materials, including for any direct, or any indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought
by a third party) even if such damage or loss was reasonably foreseeable or UTIA AV CR v.v.i. had been advised
of the possibility of the same.

Critical Applications:
UTIA AV CR v.v.i. products are not designed or intended to be fail-safe, or for use in any application requiring
fail-safe performance, such as life-support or safety devices or systems, Class III medical devices, nuclear
facilities, applications related to the deployment of airbags, or any other applications that could lead to death,
personal injury, or severe property or environmental damage (individually and collectively, "Critical
Applications"). Customer assumes the sole risk and liability of any use of UTIA AV CR v.v.i. products in Critical
Applications, subject only to applicable laws and regulations governing limitations on product liability.

