

I-MECH PROJECT OVERVIEW

07/03/2018

Presenter: George Bravos Affiliation: GNT

Wide range of industrial apps requiring precise motion control

- ✓ App domains: Robotic manipulators, CNC machine tools (big machining, highspeed machining), micro-positioning systems, paper machines, automotive industry, etc.
- Increasing performance requirements coming from top management layers higher bandwidth of the control loops and improved motion precision, adaptability, robustness, security – all covered by novel smart functions
- ✓ There is a gap between scientific research and industrial practice

Scientific/Technological, integration and exploitation objectives

code	Obective description
07.4	To develop techniques for employment of advanced model-based methods for the design, real-time
511	control and self-diagnosis of cyber-physical systems
	To develop a smart Instrumentation layer gathering visual and/or sensor information from
ST 2	supplementary instrumentation installed on the moving parts of the controlled system to enhance the
	achievable performance of the system
	To develop modular unified, Hardware and Software motion control building blocks implementing
ST 3	a service-oriented architecture paradigm, i.e. smart Control Layer
SI 1	To integrate the developed building blocks into a conceptual open platform for intelligent control of
	industrial mechatronic systems
SE 1	To prove the platform deployability on commercial control systems produced by consortium partners
SE 2	To prove the platform deployability onto commercial industrial robots (fixed, modular)
SE 3	To pre-validate I-MECH platform in industrial-relevant environments (clean, harsh)
SE 4	To establish I-MECH center which shall ensure sustainable cooperation between partners after the
	project termination.

BB1: Platform for Smart Sensors with Advanced Data Processing

BB6: Self-commissioning velocity and position control loops
BB7: Vibration control module
BB8: Robust model-based
multivariable control
BB9: Iterative and repetitive control module

BB9: Control specific multi-many core Platform BB10: RTSO for multi-many core Platform BB5: High performance servo amplifier

7/3/2018

- ✓ I-MECH main research focus is in "Layer 2" and " Layer 3"
- ✓ I-MECH platform strives for following "Layer 1" features:
- SOA > support of globally accepted standards (e.g. OPC UA)
- Industry 4.0 > connectivity to ERP/MES layers, adopting IoT principles
- S-o-S > connectivity / cooperation between machines

PUBLIC

- Predictive maintenance > building block with diagnostic and performance monitoring features

- 1) Pilots -> driven by companies producing machines which should be on market
- 2) Use cases -> driven by companies producing control equipment (HW and SW), the innovated equipment should be on market
- 3) Demonstrators -> test of I-MECH BBs at the production line level (both clean and harsh environment)

Generic substrate carrier (SCC)

12-inch wafer stage (NXP)

7/3/2018

Big CNC machine (Correa)

Packaging machine (IMA)

Medical manipulator (Philips)

Drive for industrial Apps (Gefran)

Compact control for CNC machines (Fagor)

PAC base HW (Teco)

Validation of space GNC systems (GMV)

Contact lenses transport System (J&J) Injection mold industry

Modular robotic arm (UWB)

New APP domains: **mobility, automotive, aerospace, healthcare, industrial inspection**

PUBLI

The Common Dissemination Booster (CDB) is a brand-new service from the European Commission which is free of charge and available to all, ongoing or closed, European, National, Regional funded Research & Innovation (R&I) projects (H2020, FP7 or other).

- The booster encourages projects to come together to identify a common portfolio of results and shows them how best to disseminate to end-users, with an eye on exploitation opportunities.
- Brand-new service from the European Commission
- Professional support to disseminate results from your R&I Project Groups
- Free of charge
- Available to all European and nationally-funded Research &Innovation (R&I) projects